

PHOTONICS RESEARCH GROUP

Photonic reservoir computing using silicon chips

Kristof Vandoorne, Pauline Mechet, Martin Fiers, Thomas Van Vaerenbergh, Bendix Schneider, Andrew Katumba, Floris Laporte, David Verstraeten, Benjamin Schrauwen, Joni Dambre and Peter Bienstman

THE BLACK BOX

What can this chip do?

Several things!

- Do arbitrary boolean calculations with memory on a bitstream
- Recognise arbitrary 5-bit headers at 12.5 Gbps
- Perform speech recognition of isolated digits
- Does not consume any active power
- Easily upscalable to higher speeds

How does it do it?

Using "Reservoir computing", a brain-inspired technique to solve pattern recognition problems in a fast and power-efficient way

WHAT IS RESERVOIR COMPUTING?

What is reservoir computing?

- From field of machine learning (2002)
- Related to neural networks
- So far mainly in software
- Very successful:
 - Better than state-of-the-art digit recognition
 - Speech recognition
 - Robot control

• ...

Reservoir computing

Don't train the neural network, only train the linear readout

imec 8

A hardware implementation...

Why does it work?

PHOTONICS RESEARCH GROUP

imec 10

PHOTONIC RESERVOIR COMPUTING

Photonic reservoirs

Photonics

Why photonics?

- Faster
- More power efficient
- Richer dynamics in nodes
- Light has a phase

The very beginning...

OPTICAL AMPLIFIER NETWORKS

Use SOAs as neurons

Looks like tanh, but positive signals only

SOA model

The gain in the SOA model is dependent on the input power and its own history

Swirl topology

Speech corpus

5 female speakers, saying 10 times the same 10 digits, ranging from zero to nine

Time scales

 dynamics of light signal should be on time scale of SOA dynamics and chip delays

- convert 1 sec speech to 1 ns light signal
- 9 orders of magnitude upconversion

Word error rate

PHOTONICS RESEARCH GROUP

imec 21

Reducing 2D plots to single number

Absolute minimum (phase controlled)

Minimum (phase averaged)

Controlling the phase offers clear advantage

The next step...

PASSIVE SILICON RESERVOIRS

What happens if you remove the SOAs?

Passive Silicon reservoir

- silicon photonics: mature technology
- nodes become simple splitters/combiners
- non-linearity in readout suffices
- no need for amplifiers which consume power
- no longer limited by timescale of non-linearity

Vandoorne et al, Nature Comms, 5, 3541, 2014

Speech task: passive reservoirs (no amplifiers)

NL coming from the detector suffices!

16 node swirl network where 11 nodes could be measured from 1 input

The input: 11136 bits modulated at 1531 nm with speeds between 125Mbit/s and 12.5Gbit/s

First task: desired output should be the XOR of every bit with the previous bit.

Hard task in machine learning (non-linear!)

Measurements and simulations for the XOR task correspond

The XOR task can be solved at different speeds and different bit combinations

Other Boolean tasks can be solved as well (with the same reservoir states)

Header recognition

Advantages

• Scalability:

- Note that we spent a lot of effort to slow down the signal!
- Easily scalable to higher speeds by shortening the delays
- No active power consumption on chip
- Same generic chip can be used for
 - digital tasks (simulation confirmed by experiment)
 - analog tasks (theory only, no suitable equipment)

APPLICATIONS

PHOTONICS RESEARCH GROUP - CONFIDENTIAL

Telecom task: non-linear equalization of optical links

PHOTONICS RESEARCH GROUP

imec 37

Equalization results with passive SOI chip

Up to 200 km below FEC Limit

Scaling this up

- PhResCo: recently started H2020 European project (KULeuven, IBM, UGent, Supelec, IHP)
- Integrated readout on chip:

First design: comparing 3 different technologies

Conclusions

Neuromorphic computing

is interesting new paradigm

for photonics information processing

Flow cytometry

PHOTONICS RESEARCH GROUP

imec 42

Imec cell sorter

Computational complexity

- Complex convolution or sequence of 2D FFTs
- 512x512 pixels/image
- ➢ 1M cells/sec

#	Site	System	Cores	Perf.ormance[TF/ sec]	Power [kW]
482	Automotive United States	IBM Flex System x240, Xeon E5-2670 8C 2.600GHz, Infiniband FDR IBM	8,336	157.7	181

http://www.top500.org/

PHOTONICS RESEARCH GROUP

imec 45

Real experimental data

Neural network - pipeline

Three-part WBC classification

Dataset of ~7500 non-purified WBC:

Granulocytes (59.8%),

Lymphocytes (34.6%),

Monocytes (5.6%)

- Use of 10 random folds for crossvalidating (CV) the results
- Adding noise to weights at fixed SNR

Purified monocyte/granulocyte classification

Averaged classification results with increasing signal-to-noise ratio (from left to right: 30dB, 10 dB, 3 dB)

Class 1 = monocytes Class 2 = granulocytes

Towards a hardware solution

Conclusions

Neuromorphic computing

is interesting new paradigm

for photonics information processing

EXCITABLE SILICON RINGS

Building a photonic spiking neuron

Research question

• People have seen excitability in photonics before, but never cascaded it on chip

• Can we cascade excitability on-chip using ring-resonator neurons?

Thermo-optic effect causes redshift

Self-heating causes bistability

Free carriers cause blueshift

Combination free carrier and thermal effect can cause self-pulsation

Simulations: bistability and self-pulsation

Simulation: excitability

Wavelength and input power 'near' self-pulsation...

Simulation: cascadability

Experiment: self-pulsation

Experiment: excitability

Pulses excited by external trigger signal:

Experiment: cascadability

PHOTONICS RESEARCH GROUP

imec 64

Cascading rings = creating a delay line

Cascading rings = creating a delay line

Max ~ 9-10 rings

10 rings result in a ~200 ns delay of a 15-20 ns pulse

10 rings result in a ~200 ns delay of a 15-20 ns pulse

Making a loop => spike encoded memory/clock

The concept works! (loop from ring 2-8)

Conclusions

Neuromorphic computing

is interesting new paradigm

for photonics information processing

