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Study on the limit of detection in 
MZI-based biosensor systems
Daan Martens & Peter Bienstman

Mach-Zehnder interferometers are integrated photonic sensors that have yielded excellent detection 
limits down to 10−7 RIU. They are of particular interest due to their large design freedom, allowing for 
example application in promising point-of-care compatible read-out schemes. The attainable detection 
limit of such sensors can interact with the sensor design in different ways, depending on the dominant 
origin of noise which can either be influencing a single sensor arm, both sensor arms or can be unrelated 
to the sensor itself. In this work, the interaction of these three noise regimes with the sensor design 
is examined. The regimes are combined into a framework that predicts the limit of detection as a 
function of sensor design. A set of experimental results confirms the validity of this obtained theoretical 
framework. This analysis provides a blueprint for optimization of MZI photonic sensors under any 
combination of read-out method and measurement circumstances.

Label-free integrated evanescent field biosensors can provide qualitative as well as quantitative measurements 
in real-time, rendering them excellent candidates for point-of-care diagnostic applications. In research, various 
types of such sensors have been developed, including ring resonators, photonic crystals and various types of inter-
ferometric sensors1–7. This plethora of research output is in stark contrast with the low number of available com-
mercial applications, which furthermore are typically limited to the research market or clinical laboratories8–10. 
An important barrier for further commercial implementation of these sensor types is the typically high instru-
mentation cost, as expensive components are typically required for optical readout (a tunable laser or an optical 
spectrum analyzer) and/or alignment (microprecision stages). These factors limit the attainable application range 
to the aforementioned higher end of the market, whereas the low chip costs renders these sensor types inherently 
well suited for the lower, point-of-care end of the market, e.g. self-tests or GP office based tests.

In11,12, a sensing scheme was proposed that can overcome these instrumentation barriers. It consists of an 
integrated photonic sensor combined with an on-chip spectral filter, a circuit that can be interrogated through 
an LED and a CMOS camera. When grating couplers are used at the input13 in combination with flood illumi-
nation14, the required alignment precision is greatly reduced, to a point where active alignment is no longer 
required. This low-cost interrogation scheme is therefore fully compatible with point-of-care applications.

As a sensor for this circuit, the Mach-Zehnder interferometer is an optimal choice as its sensitivity and spec-
tral period can be independently adjusted12. This is particularly relevant as the spectral period needs to be adapted 
to the technological limitations of the integrated spectral filters15. In12, this sensor circuit was theoretically and 
experimentally examined. This fully point-of-care compatible scheme yielded detection limits similar to those of 
other integrated photonic sensors with more expensive read-outs12.

In this work we will further explore the possibilities and limitations of MZI-based sensor systems. In12 we 
examined how certain intensities of noise on the sampled sensor spectrum translate to minimum detectable 
wavelength shifts. In this work we will take a slightly different approach, looking at the final limit of detection 
as a function of various possible dominant noise sources. We will examine how, in various noise regimes, MZI 
sensor design can (or cannot) influence the detection limit, and confirm this through experimental results. This 
will result in universal guidelines on MZI sensor design optimization in the given sensing scheme and beyond.

Mach-Zehnder interferometers as photonic integrated sensors
The Mach-Zehnder interferometer (MZI) is a specific type of interferometric sensor, consisting of a photonic 
waveguide split in two, typically symmetrically. After propagation through the arms (which can have different 
lengths), the light is recombined, interfering destructively or constructively depending on the accumulated phase 
difference. As such, the accumulation of phase is translated into a change in the transmitted amplitude which 
varies as a function of wavelength. In photonic sensing, one of these arms is typically exposed to the analyte, while 
the other is isolated from it, either through physical isolation from the sample liquid or through a lack of receptor 
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molecules present on the waveguides. As such, the attained phase shift per change in environmental refractive 
index (through binding events or bulk index change) can be made arbitrarily large by increasing the length of the 
sensing arm, whilst adjusting the length of the reference arm to maintain desirable spectral characteristics. The 
2π phase ambiguity present in these systems is also not an issue: in most interrogation mechanisms, including the 
one discussed, the frequency of measurement is high compared to the speed of the biological phenomena, which 
allows to continuously monitor the phase.

In practical devices, the phase is often not directly tracked, but rather through the peak wavelength. In that 
case, the sensitivity is expressed in nm/RIU and smallest detectable shift is expressed as the smallest detectable 
peak wavelength shift. For the remainder of this work, we will speak in terms of phases rather than peak wave-
length, but they are equivalent, as a phase shift of 2π corresponds to a peak shift of a full spectral period.

The freely tunable sensitivity does of course not imply that an arbitrarily small quantity of analyte can be 
detected by simply increasing the sensing arm length. The limit of detection is influenced both by the sensitivity 
as well as the smallest detectable phase shift. This smallest detectable shift can also be influenced by the sensing 
arm length in various less trivial ways.

Detection limit of Mach-Zehnder interferometer photonic sensor systems
In12, an extensive theoretical study of the MZI as refractive index sensor was carried out. In a typical sensing 
device, one arm is exposed to the analyte and the other arm is isolated from it. In that case, the relevant sensitivity 
is found by calculating the phase shift Δφ caused by an effective refractive index change Δneff s,  in the sensing arm. 
The sensitivity is found to be:
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Here, ν represents the frequency and c is the speed of light. The sensitivity is positive if n Leff s s,  is larger than n Leff r r, , 
subscript s and r referring to sensing and reference arm respectively. As assessed before, this sensitivity can be 
tuned freely through increase of the arm length. However, the true figure of merit for sensing is the limit of detec-
tion, given by

=detection limit minimum detectable phase shift
sensitivity (2)

The minimum detectable phase shift (mdps) is defined as three times the standard deviation on the detected 
phase during a period of time when no external change is being applied. To be able to improve on the detection 
limit, it is therefore vital to understand the determining factor for this minimum detectable phase shift. This mdps 
is influenced by a large number of factors, each of which could be dominant. These factors can be divided in three 
categories through their relation with the MZI sensor as each of these will result in a different LOD regime. The 
determining factor can either be unrelated to the sensor (regime a), related to a single arm (regime b), or related 
to both arms (regime c). In the following sections, these regimes will be analyzed separately before combining 
them into a single framework.

In regime a, the most simple possibility, the factor that determines the mdps is unrelated to the sensor itself, 
e.g. the noise on the detection mechanism (like camera noise). In that case, from a sensor design point of view, 
the minimum detectable wavelength shift can be seen as a constant 3σa. Note that this final 3σa is a function of 
the whole read-out system, including for example the number of filter channels in the (on-chip) spectrometer. In 
this work, we are analyzing only the dependence on MZI sensor design, and assume a ‘fixed’ read-out mechanism. 
With such a σa, the limit of detection is given by:
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As such, improvement in the detection limit can be achieved simply through lengthening the sensor, as it scales 
with 1/Ls.

In regime b, the other extreme, the dominant noise source is related only to the sensing arm, and not to the 
reference arm. An example is the noise caused by inhomogeneity of the sample liquid, to which the typically clad 
reference arm is not exposed. In that case, the effective refractive index of the sensing arm will be normally dis-
tributed with a certain standard deviation σb.

σ∆ ∼n (0, ) (4)eff s b,
2

Note that σb is the value registered by the sensing system, and can therefore be larger than the actual standard 
deviation on the effective refractive index, due to the imperfection of the system. From this and Eq. (1), the distri-
bution of the phase in the described case is found as:


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As such, the standard deviation on the phase as a whole is given by πν σL c2 /s b , which means that the LOD is given by:
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In regime b, the limit of detection is therefore not influenced at all by the sensing length, as the change in numer-
ator and denominator in Eq. (2) cancel each other out. As such, in this case the limit of detection cannot be 
improved through adapting the sensor design, and this regime potentially results in a fundamental limit of detec-
tion (if the source of noise cannot be addressed elsewise). The more unlikely case where a noise source would 
only affect the reference arm rather than the sensing arm can be described in an identical manner, of course upon 
substitution of the properties of the sensing arm by those of the reference arm.

Regime c, the most complex case, is a dominant noise source that influences both MZI arms, for exam-
ple homogeneous temperature fluctuations. In case the reference arm is not clad and the reference arm is also 
exposed to the sample liquid (but has no receptors), inhomogeneity of the sample liquid also follows this regime. 
This type of noise will affect both arms, but not completely identically, due to their potentially different cladding, 
different geometry or possibly fabrication variations. Taking the case of homogeneous temperature fluctuations, 
a normally distributed temperature with standard deviation σc will result in the following distributions of the 
effective refractive indices of both arms:

 σΔ ∼n C (0, ) (7)eff s sT c,
2

σΔ ∼n C (0, ) (8)eff r rT c,
2

here, CsT en CrT are the temperature constants of the respective waveguides. With Eqs (7) and (8), the phase dis-
tribution becomes:
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Here, the term in Ls − Lr represents an effect that is identical for both arms, whereas the term in Ls accounts 
for the difference between both arms. In case the difference between CsT and CrT is large, the first term becomes 
negligible (except for typically irrelevant low sensing arm lengths) and regime c becomes equivalent to regime 
b, a phenomenon only affecting one arm. Other noise sources adhering to regime c will yield the same behavior, 
and can be found by substituting the temperature constants of the waveguides by the corresponding waveguide 
properties.

Equation (9) in combination with Eq. (1) yields a limit of detection within regime c given by
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where σc is independent of the MZI sensor design. This means that the only way to improve the limit of detection 
through the MZI is through | − |C C L L/ /sT rT r s . This initially suggest adapting the sensor and reference arm lengths 
for this term to equal 0 can easily result in infinitely small limits of detection. However, most, if not all, practical 
systems are limited in bandwidth as well as spectral resolution. Therefore, as the arm lengths directly determine 
the spectral period, they need to adhere to certain limitations. Taking a more practical approach, we look at the 
situation where we only consider sensors of a given spectral period. In an MZI sensor, the spectral period in the 
frequency regime pν is given by:

=
| − |νp

c
n L n L (11)g s s g r r, ,

where ng,s and ng,r are the respective group indices of sensing and reference arms. By extracting Lr as a function of 
Ls from Eq. (11) and substituting it in Eq. (10), we get the following expressing for the LOD:
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where a plus sign corresponds to a situation where − >L n L n 0s g s r g r, ,  and a minus sign corresponds to 
L n L n 0s g s r g r, ,− < . This means that, if both −L n L ns g s r g r, ,  and −n C C n/g r sT rT g s, ,  are positive or are both negative, 
corresponding to − − >L n L n n C C n( ) ( / ) 0r g r s g s g r sT rT g s, , , , , we get a hyperbole, asymptotically approaching 
3σc| − |C C n n/ /sT rT g s g r, , . In the alternative case, corresponding to − − <L n L n n C C n( ) ( / ) 0r g r s g s g r sT rT g s, , , , , a more 
complex situation arises. In this case, The LOD becomes minimal for a certain length. This is explained because, 
to achieve the required period with the required indices, at this specific point sensing and reference arm will be of 
the following length: = = | − |L L C C c p n n C C/ /( / )s r rT sT g s g r rT sT, , , meaning that a noise source which affects both 
arms homogeneously by definition will have no effect. A peculiar consequence of this is that a longer MZI will 
actually have a worse limit of detection. This local minimum can therefore be a potentially interesting point to 
target, especially for MZIs with arms with high index contrast, where it will occur at relatively low arm lengths. 
When targeting this local minimum in case the dominant factor is not yet identified or the properties of the 
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waveguide have not been experimentally determined, an initial design with equal lengths is a good approxima-
tion, as C C/rT sT will typically be close to one.

These phenomena are illustrated in Fig. 1, where the red dashed curve represents the situation where 
−L n L nr g r s g s, ,  and −n C C n/g r sT rT g s, ,  are of the same sign, for the blue continuous curve they are of opposing sign. 

Only in the latter curve, a local minimum emerges. These simulation were based on a realistic MZI made up of 
silicon nitride waveguides of 700 nm by 150 nm, designed for single mode operation around 850 nm. The clad-
dings of the arms were water (sensing arm) and silicon oxide (reference arm), and their respective group indices 
were set at simulated values of 1.8674 and 1.8878. Their temperature constants CrT and CsT were assumed equal. 
The spectral period of the sensors was set at 7 nm, rending them measurable with spectral filters with a channel 
spacing of 1 nm, which are technically feasible in this wavelength range15. The σc of 10.0 was chosen arbitrarily.

It is also noteworthy that the limit of detection at very high sensor lengths becomes σ | − |C C n n3 / /c sT rT g s g r, , . 
While no longer dependent on the arm lengths, this value can also be influenced: the easiest way to do this is design-
ing the arm waveguides as similar as possible, as fully identical waveguides would bring this limit to 0. The possibility 
of this of course depends on the available design freedom. This implies that a MZI without a cladding (and selective 
spotting of the sensing arm) will potentially outperform an MZI with a cladding for this type of noise.

In practice, for a generic sensor system, all of these types of noise will apply simultaneously. Combining the σs 
yields the following equation:
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here, different sources following the same regime can be combined in a single σ per regime if necessary. The shape 
of this curve, and what the best strategy to improve the LOD from a sensor point of view heavily depends on the 
ratio of the σs. In general, this curve consists of two hyperbolic components with respect to Ls and two constants. 
For low lengths, these two hyperbolic components will compete for dominance. For longer sensors, the two con-
stants will determine the final LOD. It is possible that a minimum occurs in the intermediate regime. An example 
of combination of the different regimes is shown in Fig. 2.

This means that the LOD at very high sensing arm lengths is determined by one of these constants, either by 
regime b or by the constant term in regime c. If the latter is the case, this high-length LOD can be improved by 
reducing the contrast between both arms, if technologically possible. If regime b is already more of a limiting 
factor than regime c, reducing the group index contrast will yield little effect.

The second important issue is whether the best achievable value is caused by the local minimum found in 
regime c, or by the value at extremely high lengths. This again depends on the ratio between the various σs and 
needs to be addressed separately for each sensor system. In general, if regime a is strong with respect to regime c, 
the minimum will not manifest itself. This implies that a high-noise measurement system might make the mini-
mum inaccessible and the best design strategy in these cases is simply a sensor that is as long as possible (without 
too much propagation loss, which was ignored in these considerations). Figure 3 illustrates both possible cases.

Experimental validation
In this section, we will experimentally validate the achieved behavior through measurements. To this end, vari-
ous MZI sensors were characterized in experiments similar to those described in12. These sensor were fabricated 
with 220 nm silicon nitride waveguides, with a silicon oxide cladding that was removed for the sensing arms of 
the Mach-Zehnder interferometers. A microscopy image of such an MZI is shown in Fig. 4. The circuits were 

Figure 1.  Detection limit as a function of sensing arm length for a series of MZIs with the same spectral period 
in case the dominant noise source applies homogeneously to both arms (situation c).
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designed for and measured in the 850 nm wavelength range. More information on the platform and the fabrica-
tion procedure can be found in16.

The measured photonic circuits consist of an MZI coupled to an AWG (Arrayed Waveguide Grating, an 
on-chip spectral filter), read out through a free-space SLED and a camera. Grating couplers are used to coupler 
light to and from the chip, similar to those described in13 The sensor circuit is illustrated through Fig. 5. Due 
to the cheap readout, this is a system that is particularly suitable for point-of-care applications, and is there-
fore highly relevant to verify the possibility and method to optimize the limit of detection without increasing 
the device cost. The sensors were designed to have identical spectral periods of 7 nm, but there was variation 
(between 5 nm and 10 nm) due to fabrication imperfections (to which the spectral period is highly susceptible). 
Furthermore, while all sensors were characterized in the same setup, it is likely that conditions slightly varied 
from experiment to experiment so strictly speaking the σ values are not identical, but we will nevertheless assume 
so. This implies that the obtained results will be indicative rather than qualitative. All measurements were done in 
a temperature controlled clean room, meaning temperature fluctuations are likely quite small.

To acquire the data, bulk sensing experiments were performed, and as one arm was isolated from the liquid 
through a cladding, potentially having repercussions for the limit of detection, through the constant factor in the 
earlier described regime c. In all of these sensors − − >L n L n n n( ) ( ) 0r g r s g s g r g s, , , , , so it is possible to have a min-
imum for =L Ls r. However, because of the low-end read-out mechanism, the hyperbolic component of regime a 
will likely dominate that of regime c, and therefore the minimum might not occur.

Figure 2.  Curves of the three separate regimes, and their combination into a single LOD curve. At various 
sensor lengths, different regimes can be dominant. The σ values are arbitrarily chosen 100.0, 0.03 and 10.0 
respectively. The MZI parameters are identical to those of Fig. 1.

Figure 3.  Two possible full LOD curves, the only difference between both being σa, chosen 10000 and 100. A 
lower σa causes a local minimum to emerge in the dashed curve. In both cases, σ = .0 03b  and σc = 10. The MZI 
parameters are identical to those of Fig. 1.
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The buffer for all of these experiments was deionized water, the analytes were various water based solutions of 
either salt or HCl. Because these are very homogeneous mixtures, sample inhomogeneity is likely small. For each 
experiment, at least four different analytes were used and the sensitivities (and, subsequently, limit of detection) 
were calculated through a linear fit of the observed peak shifts as a function of the refractive index changes. This 
method is more elaborately described in12.

Two sets of experimental data were collected. The chips were identical, the same buffer and analyte liquids 
were used, and for data collection the same Thorlabs camera was used for both sets. The only difference between 
the sets was the light source: the first set was measured with an originally fiberbased Superlum 15 mW SLED 
(SLED 1), collimated onto the chip in free space. The second set of experiments was measured with a Superlum 
freespace 20 mW SLED (SLED 2).

The results are plotted in Figs 6 and 7 respectively. It is immediately apparent that the local minimum does not 
manifest itself in either dataset. Because of this as well as the limited size of the datasets, we assume one dominant 
hyperbolic component and one dominant constant factor and fit a curve of a + x/b to both datasets. For both 
datasets, a relatively well-matching result is obtained, as shown in Figs 6 and 7, apart from a few outliers.

With respect to the dominant regimes: for the hyperbolic component, significantly different fit values are 
obtained with 1/Ls, 7691 and 3477 respectively. This indicates that the light source, the only difference between 
both sets of experiments, is the determining factor, confirming that regime a is dominant for the hyperbolic com-
ponent. This is as expected, as the alternative to a dominant regime a for the hyperbolic component is a dominant 
regime c. The latter is unlikely due to the experiments taking place in a well controlled environment, yielding a 
low σc. This furthermore explains why the local minimum is not observed, as this would only emerge through a 
dominant hyperbolic component of regime c.

The constant terms on the other hand are very similar for both curves with values of respectively 0.79 and 0.84. 
This is in agreement with the framework, as this term can be determined by a phenomenon of regime b or regime 
c, neither of which can be affected by the light source, which was the only change between the sets of measure-
ments. Based on these measurements, it is not possible to determine whether regime b or regime c is dominant, as 
both are expected to be relatively low: the homogeneity of the liquids yields a low σb, and the well controlled envi-
ronment yields a low σc. These sets of measurements illustrate how this framework can be used to optimize the 
efficiency of a sensing system: for a different LED, the same sensor length can yield a different LOD, apparently 

Figure 4.  Microscopy image of two Mach-Zehnder interferometers. Both arms are placed in a spiral for 
efficient space usage. A window in the cladding is opened on the sensing arm.

Figure 5.  Illustration of the full sensor scheme.
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suggesting one SLED outperforms the other within this sensor system. However, analysis through the framework 
shows that both SLEDs yield the same fundamental limit, if the sensing length is chosen sufficiently high. This 
implies that either of the proposed SLEDs (the most cost-effective or practical) can be used for read-out, without 
any cost on the LOD, as long as the sensing arm length is sufficiently high. Similar analysis can be performed for 
any MZI-based sensor platform, opening the path to optimizing efficiency and performance.

Conclusion
In this work, the different possible limiting factors for the limit of detection on Mach-Zehnder interferometer based 
refractive index sensors were examined. Particular attention was given to the evolution of the limiting factor for 
increasing sensing length, as this potentially allows improving the limit of detection purely through sensor design, 
without complicating the read-out. Three different possible regimes were identified and analyzed, including guide-
lines for optimizing this sensor type for a given application. The theoretical framework was confirmed through two 
sets of measurements. This framework opens up the possibility of a more thorough analysis of the limiting factor of 
any MZI-based sensor system, and as such paves the way to more performant and/or more efficient sensing devices.
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