
I

M
W
P

a

A
R
R
A
A

K
N
D
c
O
P
P

1

m
t
d
p
u
i
p
m
d
o
t
s
i

d
a
o
d
a

e
(
(
p

1
h

Journal of Computational Science 4 (2013) 313–324

Contents lists available at ScienceDirect

Journal of Computational Science

journa l h om epage: www.elsev ier .com/ locate / jocs

mproving the design cycle for nanophotonic components

artin Fiers ∗, Emmanuel Lambert, Shibnath Pathak, Bjorn Maes, Peter Bienstman,
im Bogaerts, Pieter Dumon

hotonics Research Group (INTEC), Ghent University – IMEC, Sint-Pietersnieuwstraat 41, B-9000 Ghent, Belgium

 r t i c l e i n f o

rticle history:
eceived 24 February 2011
eceived in revised form 17 February 2013
ccepted 17 May 2013
vailable online 5 June 2013

a b s t r a c t

We present IPKISS, a software framework that greatly simplifies the design of nanophotonic components.
In this approach, all steps in the workflow are based on a single high-level definition of the component,
in a Python script. Because there is only one description, the design flow becomes less error prone due
to incorrect definitions, and the overall reproducibility is greatly improved.

Furthermore it enables easy closed-loop modeling of components and circuits. Also, previous work
can easily be built upon because lower level blocks can seamlessly be replaced by new blocks. While we
eywords:
anophotonics
esigning and modeling optical
omponents
ptical circuit design

illustrate the application in photonics, this software and the used design patterns can be extended to
other domains such as RF design and to multidomain physics such as opto-electronics.

© 2013 Elsevier B.V. All rights reserved.
arametrized cell
ython

. Introduction

In a typical research or design environment, fabrication of
icro-and nanoscale devices is an expensive process with long

urnaround times. Prior to submitting a design for fabrication, these
evices are typically modeled and simulated in software. For exam-
le, in the field of nanophotonics, electromagnetic simulations are
sed to calculate how light propagates through such a device. Often

t is also required to perform tolerance analysis on the design
arameters as well as on effects of the fabrication process. One
ajor difficulty that arises when designing these devices is that the

ifferent simulation tools have their own user interface and more-
ver have their own representation to define components. Defining
hese devices in different tools is a laborious job, and there is a con-
iderable risk of introducing errors in the specification of the device
n each tool.

The main characteristic of our approach is that a component is
efined only once on a high level [1]. This component is available as

 parametrized cell (PCell), a concept originating from the design

f electronic circuits. Then, the necessary representations (e.g. a
iscretized matrix representing the component, a cross-section,

 list of polygons, port positions) to drive the different tools

∗ Corresponding author. Tel.: +32 92643272.
E-mail addresses: martin.fiers@intec.ugent.be, mfiers@gmail.com (M. Fiers),

mmanuel.lambert@intec.ugent.be (E. Lambert), shibnath.pathak@intec.ugent.be
S. Pathak), bjorn.maes@umons.ac.be (B. Maes), peter.bienstman@intec.ugent.be
P. Bienstman), wim.bogaerts@intec.ugent.be (W. Bogaerts),
ieter.dumon@intec.ugent.be (P. Dumon).

877-7503/$ – see front matter © 2013 Elsevier B.V. All rights reserved.
ttp://dx.doi.org/10.1016/j.jocs.2013.05.008
(simulation, visualization, routing) are extracted from this defi-
nition. The transition to different simulation tools should only be
written once in a generic way, which makes simulations much less
error prone. It is also much easier to reproduce earlier results and
to change sub-parts of the design. In this way, many variations
can easily be compared to one another (e.g. a different simulation
method, an improved component, or a modified design).

Python is our programming language of choice. The main rea-
son for using this programming language is the flexibility which it
offers: it can be used to make very complex software designs, yet
it has a relatively low threshold for researchers without extensive
programming skills. Our software toolset revolves around a cen-
tral design framework called IPKISS [1], which can interface with
different in-house and third-party simulation tools.

The paper is structured as follows: as the reader might not
be familiar with photonics, we very briefly describe this specific
research field in Section 2. In Section 3, we illustrate a typical work-
flow, i.e. the steps needed to design a nanophotonic component. We
show which design problems typically arise and demonstrate how
the software framework improves this flow. In Section 4, the tech-
nical design and implementation of the framework is described,
and in the fifth section we illustrate how we use the software to
efficiently design a complex optical component: An Arrayed Wave-
guide Grating. We conclude by providing license information. As
previously noted, it is easy to extend this architecture beyond the

horizon of photonics: electronic design, multidomain physics and
so on. Throughout the paper, we use Python code to explain sev-
eral core concepts. The code aims to be descriptive rather than to
explain all details.

dx.doi.org/10.1016/j.jocs.2013.05.008
http://www.sciencedirect.com/science/journal/18777503
http://www.elsevier.com/locate/jocs
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.jocs.2013.05.008&domain=pdf
mailto:martin.fiers@intec.ugent.be
mailto:mfiers@gmail.com
mailto:emmanuel.lambert@intec.ugent.be
mailto:shibnath.pathak@intec.ugent.be
mailto:bjorn.maes@umons.ac.be
mailto:peter.bienstman@intec.ugent.be
mailto:wim.bogaerts@intec.ugent.be
mailto:pieter.dumon@intec.ugent.be
dx.doi.org/10.1016/j.jocs.2013.05.008

314 M. Fiers et al. / Journal of Computational Science 4 (2013) 313–324

F integ
s ide to
f

2

t
c
c
r
r
o
T
p
p
e
c
i
F
r
S
I
u
f
m

i
i
h
l
a
w

m
t
t
a
t

3

(

ig. 1. Some examples of nanophotonic subcomponents, used for designing small
ometimes needed. Tapers (right) are used to spread light from a narrow wavegu
abricated devices are shown.

. Photonics

Photonics is the field of manipulating, generating and detec-
ing light (photons) by means of optical components. This is in
ontrast to electronics, in which electrons are the information
arriers. Some examples of photonic devices are: lasers, optical
eceivers and transmitters, CD/DVD drives and LED lighting. A
ecent trend in photonics is the drive towards miniaturization
f components, and integrating many of them on a single chip.
hese so-called (nano)photonic integrated circuits have a better
erformance, are more robust, and consume less power than bulk
hotonics, low-contrast integrated photonics and electronics. One
xcellent material for making such optical chips is silicon. Sili-
on has very low absorption losses in the wavelength range that
s used for fibre-optic communications (1300 nm and 1550 nm).
ortunately, silicon is already widely used in electronic chip fab-
ication, so we can reuse standard Complementary Metal Oxide
emiconductor (CMOS) technology to manufacture photonic chips.
n this technology, the silicon on insulator (SOI) wafer is patterned
sing deep UV lithography [2]. This opens the door to wafer-scale
abrication of nanophotonic chips, leading to devices that can be

anufactured in large volumes at low cost.
A few subcomponents of a nanophotonic circuit are displayed

n Fig. 1. The resulting device consists of submicrometer wide sil-
con lines on top of a thick glass layer. Because silicon has a very
igh index of refraction, the submicron line acts as a waveguide for

ight: electromagnetic waves with wavelengths between 1.3 �m
nd 1.55 �m can travel along the line (a so-called “photonic wire”)
ithout much loss.

By optimizing the geometry of the silicon, the light can be
anipulated. Fig. 1(a, c) shows a crossing of two waveguides, where

he geometry is engineered such that there is no crosstalk between
he waveguides. In Fig. 1(b, d) we change the width of the silicon
round the core of the waveguide and then stop the waveguide, so
hat light can diffract in the thin layer of silicon on the chip.
. Workflow for designing a component

To illustrate the problems associated with a manual workflow
that is, before adopting the framework), as well as the innovation
rated optical circuits. Because a nanophotonic circuit is planar, crossings (left) are
 a broad one. On the bottom, Scanning Electron Microscope (SEM) pictures of the

brought by our framework, we will discuss the workflow for design-
ing a typical photonic integrated component: a multimode interfer-
ometer (MMI). Although we use an optical component to illustrate
the workflow, readers from other research domains might identify
the same or similar problems based on their own experience.

In Section 3.1 we briefly introduce this device and its typical
design steps. We show that in the classical workflow (3.2) there
are a lot of manual interactions, leading to a slow, and more impor-
tantly an error-prone workflow. A workflow based on our software
(3.3) shows how one can circumvent these problems.

3.1. Example device: MMI

We will illustrate our workflow using a device that splits the
light in a waveguide into two equal parts, an important building
block in photonic IC design. It is called a multimode interferometer
(MMI), and is depicted in Fig. 2. This example is representative to
many photonic design problems and is practiced by most photonic
designers today, irrespective of the specific tools they use in each
step of the problem. The MMI consists of a sequence of waveguide
elements of different widths and shapes. Each waveguide supports
a number of electromagnetic waveguide modes, i.e. eigensolutions
of the light distribution in the dielectric medium.

There are several aspects to modeling this device, which are
illustrated in Fig. 2. When exciting the MMI with a mode in an input
waveguide, one needs to know the shape (spatial distribution) of
this mode, called the mode profile. We calculate this waveguide
mode profile using an eigenmode solver (Fig. 2, top left). The mode
has a gaussian-like profile, as shown in the figure. The mode profile
is then entered as input for a full-wave time-domain simulation to
calculate the light propagation in the device (Fig. 2, top right). As
three-dimensional (3D) full-wave simulations are computationally
very intensive, one will first run an approximate simulation in 2D
using well-known approximation methods and only then run full
3D simulations.

In order to get a highly accurate representation of the device

characteristics, a 3D simulation is then performed. From this sim-
ulation, the scatter matrix is extracted, leading to a high-level
description of the building block. In a circuit simulation tool (Fig. 2,
bottom right), several of these building blocks are combined, in

M. Fiers et al. / Journal of Computational Science 4 (2013) 313–324 315

Fig. 2. Combining several simulation tools when designing a nanophotonic light splitter. Top left: an eigenmode solver (e.g. CAMFR [3]) which calculates the mode profile of
a e dom
i , users
i

o
T
t
o

w
m

h

3

o
s
p
d
F
F
a

3

W
t
g
l
s
b
b
s

 waveguide (a gaussian-like shape), which is used as input for a finite difference tim
s then sent to a circuit simulation tool (e.g. Caphe [19], [20]), see bottom right. Also
n Python.

rder to create functional devices (for example optical filters).
hese simulations run much faster, and more attention is given to
he phenomenological parameters, rather than the physical layout
f the actual device.

In addition, most designers will want to integrate a piece of own-
ritten code (for example a numerical algorithm or an analytical
odel) in the design flow as well (Fig. 2, bottom left).
Below we give a description of the specific simulation tools we

ave used:

.1.1. Eigenmode solvers: CAMFR [3] and Fimmwave [6]
CAMFR is written in C++with a Python interface. It is devel-

ped at Ghent University and can be downloaded for free. The
ource is being distributed under a dual license scheme (GPL and
roprietary) [4]. The software is used to calculate modes in a one-
imensional approximation of the geometry, for a fast simulation.
or accurate simulations, we use the commercial software tool
immwave (Photon Design) to simulate the eigenmodes in the
ctual two-dimensional cross-section.

.1.2. Full-wave time domain simulation: Meep FDTD (MIT) [5]
Meep is an open-source finite difference time domain simulator.

ith this tool, the fields are calculated at all positions and at all
imes. It is used either in 2D approximation or in full 3D. Making a

eometry in Meep is usually done using the Scheme programming
anguage. Although very powerful, experience learns that it takes
ome iterations before the device is represented correctly if it has to
e defined manually. For devices with complex geometries, this can
e a tedious job. Also, importing modes from an electromagnetic
imulator is a laborious and error-prone job.
ain (FDTD) simulation (e.g. Meep [5]) on the top right. The output of this simulation
 might want to perform a part of the simulation using their own code (bottom left)

3.1.3. Circuit simulation: Caphe [19,20]
We use an in-house developed circuit simulator Caphe to

simulate optical circuits. The extracted results of the full-wave
simulations (for example a scatter matrix S) for each device are
imported in Caphe, which can then calculate the time and frequency
response of the full circuit.

3.2. Classical workflow

From the example above, it is clear that a lot of manual actions
are required to successfully model an optical component, and even
more to model a circuit. In the classical workflow, one manually
communicates information from one tool to the other tool. One of
the key issues here is that it is rather tedious as well as error-prone
to exchange information between these tools: the output of differ-
ent tools usually have different file formats and/or the way this data
is loaded into the simulation is different. In some cases, one even
has to write different scripts for one tool, for instance for running
the 2D and 3D simulations in Meep. Also, data is gathered in differ-
ent formats and post-processed in various external environments
such as Excel and Matlab, which involves a lot of manual data con-
version for each tool. Use of the different tools requires learning
new graphical and scripting or programming interfaces over and
over again.

3.3. New workflow
The new workflow that we developed in the past years and
which we use for our own work, is much more automated than the
workflow described previously which involved manual importing
and exporting of results, and redefining components. It is based on

316 M. Fiers et al. / Journal of Computational Science 4 (2013) 313–324

Fig. 3. Integrated workflow for designing a multimode interferometer (MMI). There is only one high-level description of the component, and all other steps extract information
f progr
e iterati
m

a
s
l

1
2

3
4
5
6

o
f
f

L
t
r

a
d
f
c
a
m
p
l
f
s
i

rom this description. For example, the simulation is performed without additional

liminated. The reproducibility is greatly improved, and the designer can focus on

anually in different simulation tools.

 single representation of the component in a high-level Python
cript. The workflow is depicted in Fig. 3 and incorporates the fol-
owing steps:

. Component definition

. Virtual fabrication, generating the simulation geometry and
visualization

. Simulation

. Data processing

. Re-iterate previous steps where needed

. Generate the final layout for fabrication

1. Component definition. Users can write their own library
f components on top of IPKISS. The multimode interferometer
rom Fig. 2 is part of such a library and can be instantiated as
ollowing:

isting 3.3.1. Creation of the component (see also Listing 4.1.1 for
he class definition). Keyword arguments are required, to improve
eadability of the code.

mmi = MmiSimple(lengt h=10. 0, widt h=5. 0)

2. Virtual fabrication, generating the simulation geometry and visu-
lization. The physical description of the component is typically
one through a geometric representation of the photomasks used
or the fabrication of the devices: the devices are fabricated in semi-
onductor using a series of lithography and etching steps (see [2]),
nd at each lithography step a geometric mask is projected onto the
aterial. At design time, the final geometry of the fabricated com-

onent is therefore represented as a list of polygons on each mask

ayer. This can be exported to a number of common image formats
or quick inspection. The simulation geometry for electromagnetic
imulations is automatically generated from the mask layout. This
s done through a virtual fabrication routine which performs an
amming work, so errors when describing a design for different simulation tools are
ng through several designs for optimization rather than describing his component

approximation of the actual fabrication process, and operates on
the different mask layers defined in the component layout. The
resulting geometry is a distribution of materials in a 2D or 3D space.
Basic design errors can already be corrected here.

In a second step, this internal representation is then converted
to the geometric representation of a specific simulation tool. This
is illustrated in detail in Section 4.3. Also, from the component
description we can extract the positions of the input and output
ports, which can be passed to the simulation tool for the correct
excitation and for the correct interpretation.

3. Simulation. A next step involves simulation of the physical
behavior of the device. As explained in the previous paragraph,
the high-level description of the component is used to extract this
geometry. The interfacing between the different tools is done auto-
matically. For example, the mode profile is calculated in CAMFR and
then passed on to Meep, without any additional programming work
on the user side. As interfacing to different tools plays a major role in
this framework, we further elaborate on how the actual interfacing
is done in Section 4.3, using CAMFR as example.

Simulation is an important step in the workflow and usually
requires a lot of resources. In the next code example we create a
simulation object to perform a simulation with Meep. The high-
level design can be persisted to a file (persist) and then executed
(run) on a cluster without the user needing to worry about the
specific details on how to run a simulation on a cluster. As explained
before, the mode profile is calculated by CAMFR and then used as

input (sources). Detectors are then added (datacollectors).

Listing 3.3.2. Defining a simulation for the multimode interferom-
eter (MMI). Simulations can be persisted to a file and then executed

utatio

o

de=0

),

"]

=sou

lect

a
p
r
a

o
r
r
r
r

e
u
t
T
d

4

m
i
i
i
n
a
n
t

l
s
p
B
a
s
f
w
w
e

4

P
c
e
s
t
T

M. Fiers et al. / Journal of Comp

n a simulation cluster.

sources = [ModeProfileAtPort(center_w avel engt h=155 0,

port=source_port,amplitu
datacollectors = [Fluxplane(port=input_port,

name="Flu x at inpu t port "

Fluxplane(port=output_port,

name="Flu x at outpu t port
sim = mm i.create_simulation (

engine=MeepSimulationEngine(sources

datacollectors=datacol

resolution=36))

sim.persist (’mysimulation ’) # Persis t to a fil e

sim.run() # Or , simulat e

4. Data processing. Using the scientific tools available in NumPy
nd SciPy, all kinds of post-processing such as curve fitting and
arameter extraction can be done seamlessly, because simulation
esults (e.g. the transmission spectrum of a component) are readily
vailable as Python numpy arrays.

5. Re-iterate. After interpreting the results of the data processing
ne can change the parameters (e.g. the length in Listing 3.3.1) and
epeat the cycle until the desired behavior for the component is
eached. In the old workflow, much more manual actions were
equired before the same set of operations in the workflow were
epeated.

6. Physical fabrication. The framework contains a number of
xport routines to write this geometry to file formats commonly
sed in semiconductor processing, such as the GDSII format. From
his GDSII file, a physical component is made as illustrated in Fig. 4.
he Python scripting makes it very easy to incorporate different
esign variations on the same mask.

. Design and implementation of the framework

The IPKISS software platform consists of four modules. The first
odule is the IPKISS engine, which is the core of the software. It

s a parametric cell (PCell) engine, which means each component
s described by several parameters. Second, using plugins one can
nteract with the PCell and extend the functionality of each compo-
ent. In our framework, we added plugins for photonic design, such
s the TECH object (explained later). The third module is a compo-
ent library for photonic design, and the fourth module allows one
o interface these PCells to simulation tools.

The proposed software framework is based on the programming
anguage Python. This choice is based on several requirements: It
hould enable the core software developers to create a sustainable
latform with the ability to make a complex, flexible architecture.
ut on the other hand, the researcher does not want to bother
bout all technical details of the implementation and wants a clean
cripting environment. Furthermore, the ability to integrate dif-
erent tools in the framework is very important: Some tools are
ritten in C/C++and need to be executed from within the frame-
ork. In Python, there are several ways to interface to C/C++, for

xample using SWIG [7].

.1. The IPKISS engine

The core of the framework is a parametrized cell (PCell) engine.
Cell is a concept widely used in the automated design of electronic

ircuits. Basically it is a class which is used to represent physical
ntities such as a transistor, a resistor, an optical component and
o on. In our software framework, we call this basic entity a Struc-
ure. Each structure has some Properties that describe the object.
his section describes what a Structure is, explains how we use
nal Science 4 (2013) 313–324 317

.1)]

rces,

ors,

Properties, and show how we use mixins to add functionality to
a PCell.

4.1.1. Structure
This is the PCell object, the basic class on which our frame-

work is based. It allows to check for variable types and supports
the mixing in of other classes, for example providing visualiza-
tion and simulation interfaces to the class. Structure objects are
stored in a library and have a unique identifier with which they can
be retrieved. Using a caching mechanism, duplicate structures are
avoided, which is necessary when a certain structure is repeated
many times. Fig. 5 shows how the Structure is defined, and Listing
4.1.1 gives an illustration of how to define a new component based
on this Structure.

4.1.2. Properties
In Python, variables do not have to be declared with a certain

type. This has the drawback that type errors are not caught upon ini-
tialization, but much later, when these variables are actually used.
E.g. when multiplying two strings, an exception is thrown and a
stack trace is displayed. This stack trace can be very intimidating
for a novice user. For that reason, we choose to give the user imme-
diate and clear feedback on the validity of the arguments upon
initialization of a Pcell.

To achieve this, we make use of Python descriptors [12]. This
mechanism allows to define generic objects that control the setting
and getting of attributes of other objects (i.e. validating attributes
for consistency), with the added advantage that it requires much
less code from the user to define the attributes of the class. This is
similar to the concept of the property built-in in Python, and for
clarity we also use the term Property in the IPKISS framework. We
implement this as a set of classes which derive from Property-
Descriptor, with different behavior and built-in restrictions. The
resulting user code is shown in Listing 4.1.1, where the properties
require only one line each, including the restrictions we want to
apply to them. In Listing 4.1.2 we show how we can override specific
properties with new restrictions. Combining restrictions is possi-
ble, for example RestrictType(list) & RestrictLength(0,5)
requires the variable to be a list, with a length between 0 and 5.
Additionally, a property can be automatically calculated by adding
a specific define method to the class. For example, the variable
area in Listing 4.2.1 is associated automatically with the method
define area.

Listing 4.1.1. Making a multimode interferometer (MMI) in

IPKISS. Properties are used to define parameters of the compo-
nent, to set restrictions, default values and so on. Furthermore they
remove the need for a dedicated init function and they force
the user to use keyword arguments to improve readability.

318 M. Fiers et al. / Journal of Computational Science 4 (2013) 313–324

F GDSII
E

MI")

ngle

leng

L
c

stri

e
a
t
t
s

l
p
T
l
e
fi
I

F
t

c

ig. 4. Fabricating the multimode interferometer. Left: Exporting the design to the

lectron Microscope (SEM) image of the actual fabricated component.

class MMISimpl e(Structure) :

__name_prefix = "MMISimple "

length=PositiveNumberProperty (def aul t=10. 0)

width=PositiveNumberProperty(defa ult=5.0)

area=PositiveNumberProperty(doc="Area under the M

def define_are a(sel f):

return sel f.widt h*sel f.heigh t

def define_layou t(sel f, layout) :

Construc t th e MM I usin g rectangle s an d tria

layout+=Rectangle(cente r=(0. 0,0. 0),

box_size=(sel f.width , sel f.

ad d mor e rectangles , triangles , .. .

...

Retur n th e layou t

return layou t

isting 4.1.2. Extra restrictions on a Property. The newly created
lass now has a restriction on its length.

class MyMmiSimpl e(MmiSimple) :

length=RestrictedProperty(def aul t=10. 0,

restriction=RESTRICT_NUMBE R & Re

The class StrongPropertyInitializer manages these Prop-
rties (see also Fig. 5). It also causes values to be assigned
utomatically to the Properties of the PCell, effectively removing
he need for a dedicated init function. Also, the consistency of
he object can be validated at instantiation. Again, this removes a
ubstantial amount of user code, improving readability.

In parallel to the development of our PCell class, other powerful
ibraries were developed that allow typing of Python variables, sup-
ort delegation and initialization of variables. One of these is the

raits library, developed at Enthought [13]. The functionality of this
ibrary is very similar to the functionality we provide, and we are
ven considering of migrating to the Traits library in the future. The
rst thing to investigate is the scalability of both libraries, because

PKISS is relatively slow when instantiating a lot of different PCells.

ig. 5. Structure is the basic entity of the IPKISS framework. Other classes can be mixed
ureCreator, which can analyze the init function and can check for a cached versi
hecks the consistency of the created object.
 format (a format commonly used in semiconductor processing). Right: A Scanning

s

th))

ctRange(3,15))

4.1.3. Mixins
The PCell engine is enriched with new functionality by mixing

additional classes into it. After mixing in a class, the PCell inherits
from this class. This is used to add functionality such as generating a
representation of the physical layout, visualizing, simulations, and
interfacing to external tools, as shown in Fig. 6. There are several
reasons to use mixins rather than to inherit all classes explicitly
(multiple inheritance). First of all, it reduces the complexity of the

PCell class. In this way you do not pollute the userspace with func-
tionalities that will never be used. Second, new modules can simply
be plugged in without changing the code base. Third, it is a way to
protect intellectual property. Additional functionality can be part of

 in using the mixin function. Structure creation is modified using the MetaStruc-

on of the created structure. StrongPropertyInitializer assigns Properties and

M. Fiers et al. / Journal of Computational Science 4 (2013) 313–324 319

F aliz

c own

a
i

t
c

i
d

4

4

i
t
w
T
T
g
d
a
o
c
c

L
g

y

ack(

ILIC

ILIC

OLOR

a
e
e
I
a

ig. 6. Functionality can be dynamically mixed into the PCell. For instance, the visu

omponent (shown in Fig. 3), or a GDSII file can be generated with write gdsii (sh

 proprietary module and can easily be plugged into the framework
f allowed.

Mixins are realized in Python by changing the special attribute
bases , which is a member of the class object. A good introduc-

ion to mixins can be found in [14]. While mixins are not a novel
oncept, they are not often used in software.

To facilitate the use of mixins, we provide a metaclass MetaMix-
nBowl that contains the function mixin, see also the inheritance
iagram in Fig. 5.

.2. Plugins for photonics

.2.1. Technology
Many of the library components can be defined in a generic way,

ndependent of the actual materials and technology processes used
o fabricate it. For instance, the concept of a waveguide is universal,
hether the material used is glass, III–V semiconductor or silicon.

herefore, the framework provides the concept of a Technology
ree: This is a collection of settings and predefined objects ortho-
onal to the component library. By loading the correct technology
efinition, a global object TECH is defined, which provides default
rguments and settings for all parametric components. This TECH
bject should be loaded in the first import statement of the exe-
utable scripts: this way it will set all default values of function and
lass attributes automatically to match the technology used.

isting 4.2.1. Definition of a physical material stack using the
lobal TECH object as explained in Section 4.2.1.

a 22 0 nm thic k Silico n laye r in IME C [10] technolog
TECH.MATERIAL_STACK S.MSTACK_ SOI_S I_22 0nm = MaterialSt

name = "220n m Si ",

materials_heights = [(TEC H.MATERIAL S.S
(TECH.MATERIAL S.S

display_style = DisplayStyle(colo r = C

The technology concepts allows the user to generate circuit
nd component designs for different fabrication processes. For

xample, the silicon photonics Multi-Project Wafer (MPW) service
PIXfab [8,9], which provides access to the fabrication facilities of
MEC [10] and CEA-LETI [11], provides technology trees for IPKISS,
s well as a library with basic components.
e 2d method can be added to the PCell, which generates a 2D representation of the
in Fig. 4).

ON_OXIDE,2. 0),

ON,0.2 20)] ,

_RED))

4.3. Interfacing IPKISS to simulation tools

In order to interface to different simulation tools it was
necessary to create several abstract classes in the core of our
software framework. We illustrate the concepts with an exam-
ple of interfacing IPKISS with the eigenmode solver CAMFR, and
end this paragraph with a small word about netlists, a feature
which allows PCells to be linked to each other to allow circuit
simulation.

4.3.1. Interfacing IPKISS to a photonics simulation tool
The physical concepts. The link between the PCell object and the

simulation tools is a generic geometric representation of the device,
consisting of a distribution of materials in a 2D or 3D coordinate
space. Each material has its own physical properties such as refrac-
tive index, a temperature coefficient, a stress and strain matrix
and so on. Predefined materials are defined by the TECH object,
as explained in Section 4.2.1, or the user can supply his own cus-
tom materials. Fig. 7 shows that the high level PCell is converted to
a 2D distribution of 1D material stacks, which is an efficient way of
describing devices made with planar process technologies (such as
often used for silicon photonics). We can then first convert this 3D
geometry (represented with 2D polygons and 1D stacks) into a flat
2D optical geometry, by compressing the refractive index distribu-
tion in the 1D stack into a single effective index (bottom right in
Fig. 7). It is also possible to extract the distribution of any material
property (such as the refractive index or the dielectric constant)
on a cartesian grid, for simulation tools that require a discretized
distribution (e.g. FDTD).

Abstract models for the different simulation types. In optics, there

are different type of solvers, as explained in Section 3.2 and illus-
trated in Fig. 2. The representation of the field is different for a mode
solver (sum of eigenmodes) than for a FDTD simulation (field at all
times), and the abstract model needs to take care of the appropriate

320 M. Fiers et al. / Journal of Computational Science 4 (2013) 313–324

F veral
s ndices

c
t

i
p
a
o
i
o
s

L
o
T
(

D(

mmi,

ion
used

ings

metr

 of

n
I
a

F
a
b

ig. 7. A structure is defined as a 2D distribution of 1D material stacks. Through se
tacks are translated on to a 3D cartesian grid n(x, y, z), or on a 2D grid of effective i

onversions. Fig. 8 shows which classes were used to interface with
he CAMFR simulation tool.

Implementations. From the abstract simulation models, concrete
mplementations are inherited for the specific tools used (for exam-
le in optics, we use Meep as FDTD solver, CAMFR and FimmWave
s eigenmode solvers). Additional implementations can be devel-
ped for other research domains. This is an important investment
n the framework before we started with the technical integration
f different tools. The advantage is that all PCells can now flexibly
witch between different tools.

isting 4.3.1. Users can create a simulation (CAMFR in this case)
f any component they design without additional programming.
he CAMFR engine was constructed using several abstract classes
see Fig. 8).

engine = CamfrEngine()

my_geometry = StructureSimulationVolumeCa rtesi anGr id2
structure=

Th e followin g metho d return s a CAMFR-nativ e simulat
simulatio n objec t ca n be customize d by th e use r or
th e eigenmode s of th e structure . CAMF R defaul t sett
in th e TEC H tree , bu t ca n be overruled .

my_sim_obj = engine.get_camfr_object_for_geometry(geo

my_sim_obj.calc() # Cal l th e cal c functio n of CAMF R

my_sim_obj.plot() # Plo t th e mode s (a built-i n metho d
It becomes clear that implementing an interface to an exter-
al tool demands a significant investment and technical expertise.

t also requires good knowledge of the simulation tools because
n interface should be based on best practice. An experienced

ig. 8. Abstract models for a simulation (left) and for a simulation volume (right). Using th
 new simulation tool can be rather involved and requires good programming skills and

e used to model all components that were previously designed in the framework.
 layers of abstraction, the material properties such as the refractive index of these
 neff(x, y).

resolution=5)

object . Thi s

 to calculat e

 are define d

y=my_geometry)

CAMFR)

researcher which is familiar with the scripting tools or user inter-
face can easily set up a simulation. When implementing an interface
to a tool (such as the CamfrEngine in Fig. 8), this know-how
becomes part of the framework. After this, researchers do not have
to care about learning a wide variety of scripting tools or user inter-
faces, saving time and making simulations less error prone. The
know-how of fellow researchers can be easily leveraged in this way,
so that researchers can focus on their core research activity.

Interfacing with different tools depends on how these tools are
controlled. CAMFR, for example, is scripted in Python, so integrating
this in the toolbox does not add technical difficulties, apart from
converting the nanophotonic component to the necessary syntax
as we explained in this section. For some tools, it is possible to
communicate with them using sockets (for example: Fimmwave).
Another way to interface to a tool is by using the tool’s API. If an
API is provided, one can tightly integrate the tool with the frame-
work. A very good example of this is Python-Meep, a thin wrapper

ese conventions, new simulation tools can be integrated in the framework. Adding
the knowledge of the specific tool, but once a new simulation class is added, it can

utatio

a
m
n
t
b
p
o

a
E

4

t
d
p
m
c

L
t
s

unt

i
n

4

s
f
w
a
w

4

t
W
p
t
a
s
l
[
t
l
g
d
f

5
G

t

M. Fiers et al. / Journal of Comp

round Meep, developed at Ghent University. SWIG [7] was used to
ake the bridge between the C++program Meep and Python. Tech-

ical details about interfacing C++and Python, and why we chose
o use SWIG, can be found in [15]. In this way, scripts can directly
e written in Python instead of using the C++API or the Scheme
rogramming language. When interfacing directly is not possible,
ne can still interface through files.

Another mixin has been developed that makes the PCell avail-
ble to OpenAccess compliant tools, such as Cadence, which is an
DA tool commonly used to design electronic systems.

.3.2. Optical circuits: interfacing to circuit simulation tools
Circuit-level design is crucial in making integrated optical sys-

ems [16–19]. IPKISS allows the user to link PCells, allowing it to
rive circuit simulation tools both in frequency domain (for exam-
le in optical filter design) and in time domain (for example for
odeling advanced modulation schemes). The following piece of

ode shows how two Structures A and B can be linked together:

isting 4.3.2. Defining a netlist to link components. This allows us
o simulate circuits, and automatically trigger different simulation
trategies for individual subcomponents.

class AB(Structure):

def define_netlis t(sel f, netlist) :

N = Net() # A ne t ca n lin k an arbitrar y amo
N += sel f.childre n.A.east_ports [0]

N += sel f.childre n.B.west_ports [0]

netlist += N
return netlis t

The Structure AB now contains an internal representation of
ts network. This can be used to route electrical and/or optical sig-
als from one Structure to the other.

.4. Component library

On top of our framework we have made a component library (a
ubset of it is distributed with IPKISS). In it there are a lot of designs
or already fabricated and tested devices. Using little programming
ork, new components can be designed. The flexibility of Python

llows to easily swap and redesign pieces of components, which
e will illustrate in Section 5.

.5. Python libraries

The rich ecosystem of Python greatly facilitates research activi-
ies. We list some of the employed libraries together with their use.

e use Mayavi [21] for 3D visualization of the devices and Mat-
lotlib [22] for 2D visualization. Shapely [23] is used to manipulate
he geometry of the components with logical operations during the
lgorithm for virtual fabrication. h5py [24] is used to read data from
imulations, and SciPy is used for data fitting. Next to these free
ibraries, we also interface with commercial tools, e.g. FimmWave
6]. Our philosophy is to include at least a free tool where possible
o cover the basic functionality without an additional cost. Other
ibraries can be added in the future. For consistency within our
roup, and to facilitate installation, we use the Enthought Python
istribution [13], which contains many of these libraries, and is free
or academic use.

. Advanced workflow for designing an Arrayed Waveguide

rating

In this paragraph, we demonstrate how we create a workflow
o design and model an Arrayed Waveguide Grating (AWG). We
nal Science 4 (2013) 313–324 321

of port s

demonstrate how we can easily swap components, and how differ-
ent simulation models can be used for different subcomponents.
The used concepts can be generalized to other domains, such as
multiphysics simulations and electronic design.

An Arrayed Waveguide Grating (AWG) is one of the vital compo-
nents in Wavelength Division Multiplexing (WDM) systems. They
are used to separate many wavelength channels into different
waveguides (or vice versa, merge them). It consists of two star cou-
plers and an array of waveguides with a linear increment of length.
The principle is demonstrated in Fig. 9(a): A light beam enters the
input star coupler and is distributed over the waveguide array. The
different wavelengths reach the second star coupler with a different
phase shift. Because of this, different wavelengths focus at different
output positions.

Using a single simulation technique it is difficult to simulate
these kinds of complex structures. We developed a hybrid model
using our software framework to design and simulate the AWG [25],
consisting of a well integrated combination of (semi-)analytical
methods (in Python code) and numerical methods (using programs
interfaced to IPKISS).

The AWG is divided into three parts: two star couplers and an
array of waveguides. Fig. 9(c) shows the simulation domain. For
simulation of the array of waveguides we use an analytical wave-
guide propagation model which can take some non-idealities into
account. The length of the waveguides is automatically extracted
from the building block and the waveguide propagation properties
are described in our waveguide model. To simulate the transmis-
sion of the two star couplers, they are broken down further into
several parts: the input and output waveguides and the free space
propagation region in which the light beams expand. The input
and output waveguides are simulated using CAMFR – as CAMFR is
integrated into the framework, the extraction of the physical geom-
etry from the higher level description and feeding that to CAMFR is
automated. The free space propagation region is simulated using a
semi-analytical method implemented in Python code, taking the
electromagnetic modes of the input and output waveguides as
returned by CAMFR. Positions and dimensions of the waveguides,
dimensions of the free space propagation region are all automat-
ically extracted from the higher-level description, and material
properties are obtained from the different subcomponent models.
In the end, the transmission of the full AWG is obtained by multi-
plying the calculated transmission matrices (T matrices) of the star
couplers and the waveguide array.

To validate our simulations we compare these results with mea-
surements for a 12 × 400 GHz MMI-AWG, shown in Fig. 10.

The spectral response of the individual channels match nicely
with the experimental results as shown in Fig. 10. Note that there
is a shift in wavelength between the simulations and experiments,
and that in the experiments the extinction ratio is about 5 dB
smaller. Based on these observations, we can make corrections in

the models, such as slightly modifying the refractive indices, or
incorporating additional losses in the waveguides. The flexibility of
the framework allows us to plug in other subcomponents without
any duplication of work, such as different input/output waveguide

322 M. Fiers et al. / Journal of Computational Science 4 (2013) 313–324

b) and

a
b
A
w
T
p
w
m

w

6. Availability and licensing

F
t

Fig. 9. Different models of the Arrayed Waveguide Grating. The GDSII file (

pertures [25] and different types of waveguides and waveguide
ends. This allows us to very quickly simulate and fabricate an
WG with functional specifications without fabrication errors and
ith good correspondence between simulation and measurement.

his idea was introduced in [26]. Also, the influence of various
arameter variations can easily be studied, as long as they are
ithin the acceptable parameter range of the device and waveguide

odels.
Instead of writing separate independent scripts that do all this

ork, we were able to describe and solve the problem fully in the

ig. 10. Measurements (right) of the AWG match very good with the semi-analytical mo
he AWG, we can immediately simulate and fabricate an AWG with different parameters
 the simulation volume (c) are automatically generated by the framework.

software framework. Python subclassing facilitates this: the users
only need to override the part of the design in which they are
interested. Other designers can now easily plug in their own aper-
tures and waveguides, optimize this component using the proposed
framework, and finally fabricate the component.
IPKISS is a multi-licensed open-source project. There are three
available licenses, targeted at different users (see also [1]):

del which was constructed using IPKISS (left). Using the high-level description of
.

utatio

•

•

•

A
l

7

e
a
i
i
fl
n
M
a
n
i
g
s
l
a
s

U
s
b
s

A

(
N
F
u

R

[
[
[
[
[

[

[
[
[
[

[
[
[
[
[
[

[

[
[

M. Fiers et al. / Journal of Comp

Community license: A GPL2-licensed code base of IPKISS will
allow access to the framework free of cost.
Developer: A custom license that allows the user to distribute his
own plug-ins and component libraries at his discretion, without
the open-source requirements imposed by the GPL (for instance,
under non-disclosure terms which would be incompatible with
GPL2). The licensee does not have the right to distribute the IPKISS
framework itself, ensuring that plugins remain compatible with
the main code base.
Custom licenses: Developers who require custom license terms
or want to incorporate IPKISS into their own products can contact
the authors.

part from the IPKISS framework itself, a subset of the component
ibrary is available as open-source.

. Conclusion

The IPKISS software framework provides a powerful and generic
nvironment for the design, simulation and fabrication of electronic
nd optical components and circuits. The software framework
mproves the workflow for designing components because all steps
n the workflow are based on a single high-level description. The
exibility of the framework allows easy customization of compo-
ents and workflow using the standard high-level language Python.
ost commercial packages (for example, Phoenix software [27]

nd Lumerical [28]) do not allow this type of flexibility and do
ot feature mixing of different tools. IPKISS, on the other hand,

s not tied to any specific vendor of simulation tools. The sin-
le description reduces errors in the design process and greatly
implifies the optimization workflow of a given component. By
inking components using netlists, one can simulate circuits, and
utomatically trigger different simulation strategies for individual
ubcomponents.

The IPKISS framework has been in development at Ghent
niversity and IMEC since 2002 and has proven its worth exten-

ively for silicon photonic design and simulation. Recently, it has
een made publicly available through an open-source licensing
cheme [1].

cknowledgements

This work is supported by the Interuniversity Attraction Pole
IAP) Photonics@be of the Belgian Science Policy Office and the ERC
aResCo Starting grant. M. Fiers acknowledges the Special Research
und of Ghent University. We acknowledge Y. De Koninck for his
seful comments.

eferences

[1] http://www.ipkiss.be
[2] S. Selvaraja, P. Jaenen, W. Bogaerts, P. Dumon, D.V. Thourhout, R. Baets, Fab-

rication of photonic wire and crystal circuits in silicon-on-insulator using
193 nm optical lithography, Journal of Lightwave Technology 27 (18) (2009)
4076–4083.

[3] P.R. Bienstman, Baets, Optical modelling of photonic crystals and VCSELs using
eigenmode expansion and perfectly matched layers, Optical and Quantum Elec-

tronics 33 (2001) 327–341.

[4] http://camfr.sourceforge.net
[5] A.F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J.D. Joannopoulos, S.G. John-

son, MEEP: a flexible free-software package for electromagnetic simulations
by the FDTD method, Computer Physics Communications 181 (2010) 687–
702.

[6] http://www.photond.com/products/fimmwave.htm
[7] http://www.swig.org
[8] http://www.ePIXfab.eu
nal Science 4 (2013) 313–324 323

[9] P. Dumon, W. Bogaerts, R. Baets, J.-M. Fedeli, L. Fulbert, Towards foundry
approach for silicon photonics: silicon photonics platform ePIXfab, Electronics
Letters 45 (2009) 581–582.

10] http://www.imec.be
11] http://www.leti.fr/en
12] http://docs.python.org/reference/datamodel.html#descriptors
13] http://www.enthought.com
14] C. Esterbrook, http://www.linuxjournal.com/article/4540, Linux Journal (84),

2001.
15] E. Lambert, M. Fiers, S. Nizamov, M. Tassaert, S. Johnson, P. Bienstman, W.

Bogaerts, Python bindings for the open source electromagnetic simulator Meep,
Computing in Science Engineering 3 (3) (2011) 53–65.

16] http://www.aspicdesign.com
17] http://www.lumerical.com/tcad-products/interconnect
18] http://www.vpiphotonics.com/optical systems.php.
19] M. Fiers, T.V. Vaerenbergh, K. Caluwaerts, D.V. Ginste, B. Schrauwen, J. Dambre,

P. Bienstman, Time-domain and frequency-domain modeling of nonlinear opti-
cal components at the circuit-level using a node-based approach, Journal of the
Optical Society of America B (2012).

20] http://photonics.intec.ugent.be/research/topics.asp?ID=138
21] http://mayavi.sourceforge.net
22] http://matplotlib.sourceforge.net
23] http://trac.gispython.org/lab/wiki/Shapely
24] http://h5py.alfven.org
25] S. Pathak, E. Lambert, P. Dumon, D.V. Thourhout, W. Bogaerts, Compact SOI-

based AWG with flattened spectral response using an MMI, in: Proc. Group IV
Photonics., 2011, pp. 45–47.

26] W. Bogaerts, P. Bradt, L. Vanholme, P. Bienstman, R. Baets, Closed-loop modeling
of silicon nanophotonics from design to fabrication and back again, Optical and
Quantum Electronics 40 (2008) 801–811.

27] http://www.phoenixbv.com
28] http://www.lumerical.com

Martin Fiers completed his studies in engineering (elec-
trical engineering) at Ghent University, Belgium in 2008
and joined the department of information technology
(INTEC) at the same university. He is a Ph.D. student work-
ing on Photonic Reservoir Computing. His main interests
are the modeling of nanophotonic components and reser-
voir computing.

Emmanuel Lambert received the master degree in engi-
neering from K.U.Leuven University, Belgium in 1999.
He joined the department of information technology
(INTEC) in 2009, and is working on an integrated software
framework of photonic design tools. His interest are the
modeling of nanophotonic circuits, and the integration of
different software tools.

Shibnath Pathak received his M.Sc. degree in Physics
from Indian Institute of Technology, Madras (India) in June
2009. As part of M.Sc. degree he completed his master
thesis on near field scanning microwave microscopy. In
November 2009 he joined the department of information
technology (INTEC) at Ghent University as a Ph.D. student
in the photonics research group. His main research inter-
ests are simulation and design of a silicon AWG and of
optical switches.

Bjorn Maes received the engineering degree in applied
physics in 2001 from Ghent University, Belgium, and a
Ph.D. from the same university in 2005. During 2005–2006
he spent one year as a postdoctoral associate at the
Joannopoulos research group at MIT. In 2006–2010 he
was a FWO postdoctoral fellow at the Photonics Research
Group from Ghent University. He is working on the physics

of photonic crystals, plasmonics, nonlinear photonics and
solar cells. Bjorn Maes started a staff position at the Uni-
versity of Mons in September 2010.

http://www.ipkiss.be
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0010
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0010
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0010
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0010
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0010
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0010
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0010
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0010
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0010
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0010
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0010
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0010
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0010
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0010
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0010
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0010
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0010
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0010
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0010
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0010
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0010
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0010
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0010
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0010
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0010
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0010
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0010
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0010
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0010
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0010
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0010
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0010
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0010
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0010
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0010
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0010
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0010
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0015
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0015
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0015
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0015
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0015
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0015
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0015
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0015
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0015
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0015
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0015
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0015
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0015
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0015
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0015
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0015
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0015
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0015
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0015
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0015
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0015
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0015
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0015
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0015
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0015
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0015
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0015
http://camfr.sourceforge.net
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0025
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0025
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0025
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0025
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0025
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0025
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0025
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0025
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0025
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0025
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0025
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0025
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0025
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0025
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0025
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0025
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0025
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0025
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0025
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0025
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0025
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0025
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0025
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0025
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0025
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0025
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0025
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0025
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0025
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0025
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0025
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0025
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0025
http://www.photond.com/products/fimmwave.htm
http://www.swig.org
http://www.ePIXfab.eu
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0045
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0045
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0045
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0045
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0045
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0045
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0045
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0045
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0045
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0045
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0045
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0045
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0045
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0045
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0045
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0045
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0045
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0045
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0045
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0045
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0045
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0045
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0045
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0045
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0045
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0045
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0045
http://www.imec.be
http://www.leti.fr/en
http://docs.python.org/reference/datamodel.html#descriptors
http://www.enthought.com
http://www.linuxjournal.com/article/4540
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0075
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0075
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0075
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0075
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0075
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0075
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0075
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0075
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0075
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0075
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0075
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0075
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0075
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0075
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0075
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0075
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0075
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0075
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0075
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0075
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0075
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0075
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0075
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0075
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0075
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0075
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0075
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0075
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0075
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0075
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0075
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0075
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0075
http://www.aspicdesign.com
http://www.lumerical.com/tcad-products/interconnect
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0095
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0095
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0095
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0095
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0095
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0095
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0095
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0095
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0095
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0095
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0095
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0095
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0095
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0095
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0095
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0095
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0095
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0095
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0095
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0095
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0095
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0095
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0095
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0095
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0095
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0095
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0095
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0095
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0095
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0095
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0095
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0095
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0095
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0095
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0095
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0095
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0095
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0095
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0095
http://photonics.intec.ugent.be/research/topics.asp?ID=138
http://mayavi.sourceforge.net
http://matplotlib.sourceforge.net
http://trac.gispython.org/lab/wiki/Shapely
http://h5py.alfven.org
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0125
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0125
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0125
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0125
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0125
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0125
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0125
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0125
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0125
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0125
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0125
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0125
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0125
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0125
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0125
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0125
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0125
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0125
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0125
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0125
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0125
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0125
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0125
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0125
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0125
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0125
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0125
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0125
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0125
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0125
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0125
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0130
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0130
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0130
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0130
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0130
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0130
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0130
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0130
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0130
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0130
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0130
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0130
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0130
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0130
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0130
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0130
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0130
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0130
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0130
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0130
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0130
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0130
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0130
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0130
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0130
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0130
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0130
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0130
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0130
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0130
http://refhub.elsevier.com/S1877-7503(13)00073-2/sbref0130
http://www.phoenixbv.com
http://www.lumerical.com

3 utatio

ing from Ghent University, Belgium, in 2002, where he
received a Ph.D. degree in electrical engineering in 2007
for his work in wavelength filters in silicon photonic wires.
He currently coordinates ePIXfab, a initiative for multi-
project wafer fabrication in photonics.
24 M. Fiers et al. / Journal of Comp

Peter Bienstman received a degree in electrical engineer-
ing from Ghent University, Belgium, in 1997 and a Ph.D.
from the same university in 2001, at the Department of
Information Technology (INTEC), where he is currently an
associate professor. During 2001–2002, he spent a year
in the Joannopoulos research group at MIT. His research
interests include several applications of nanophotonics
(biosensors, photonic information processing, etc.) as well
as nanophotonics modeling. He has published over 50
papers and holds several patents. He is a member of IEEE-
LEOS.

Wim Bogaerts is professor in the Photonics Research
Group at Ghent University, Belgium. He completed his
studies in engineering (applied physics) at Ghent Univer-
sity in 1998 and joined the department of information
technology (INTEC) at both Ghent University and the
Interuniversity Microelectronics Center (IMEC) where
he received his Ph.D. degree in 2004. In the photonics

research group he specialized in the modeling, design
and fabrication of nanophotonic components. Currently
he coordinates the development of nanophotonic compo-
nents in SOI in IMEC. He is a member of the IEEE Photonics
Society, the Optical Society of America (OSA) and SPIE.
nal Science 4 (2013) 313–324

Pieter Dumon received the degree in electrical engineer-

	Improving the design cycle for nanophotonic components
	1 Introduction
	2 Photonics
	3 Workflow for designing a component
	3.1 Example device: MMI
	3.1.1 Eigenmode solvers: CAMFR [3] and Fimmwave [6]
	3.1.2 Full-wave time domain simulation: Meep FDTD (MIT) [5]
	3.1.3 Circuit simulation: Caphe [19,20]

	3.2 Classical workflow
	3.3 New workflow

	4 Design and implementation of the framework
	4.1 The IPKISS engine
	4.1.1 Structure
	4.1.2 Properties
	4.1.3 Mixins

	4.2 Plugins for photonics
	4.2.1 Technology

	4.3 Interfacing IPKISS to simulation tools
	4.3.1 Interfacing IPKISS to a photonics simulation tool
	4.3.2 Optical circuits: interfacing to circuit simulation tools

	4.4 Component library
	4.5 Python libraries

	5 Advanced workflow for designing an Arrayed Waveguide Grating
	6 Availability and licensing
	7 Conclusion
	Acknowledgements
	References

