
1434 IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 16, NO. 5, SEPTEMBER/OCTOBER 2010

All-Optical 2R Regeneration Using the Hysteresis
in a Distributed Feedback Laser Diode

Koen Huybrechts, Student Member, IEEE, Takuo Tanemura, Member, IEEE, Koji Takeda, Student Member, IEEE,
Yoshiaki Nakano, Member, IEEE, Roel Baets, Fellow, IEEE, and Geert Morthier, Senior Member, IEEE

Abstract—A broadband optical 2R regenerator based on a single
distributed feedback laser is demonstrated for nonreturn to zero
signals at a bitrate of 10 Gb/s. A semi-analytical approach for the
influence of hysteresis on the transfer function of a 2R regenerator
is shown.

Index Terms—Distributed feedback (DFB) laser, hysteresis, 2R
regeneration.

I. INTRODUCTION

THE TELECOMMUNICATION industry has experienced
a huge growth in the past years and the need for bandwidth

is expected to increase further as new internet-based services
are being implemented. Optical point-to-point wavelength-
division-multiplexed (WDM) network links were able to fulfill
the capacity requirements in the past and have been implemented
worldwide. However, to meet the future demand, the logical next
step in optical network evolution will be to implement the rout-
ing and switching in the optical domain. A major concern is
however the accumulation of noise, which severely limits the
cascadability of optical network nodes. Different techniques for
2R regeneration have been proposed in the past such as devices
based on interferometers [1] and self-phase modulation [2], [3].

Recently, we demonstrated that a distributed feedback (DFB)
laser diode shows a hysteresis in the lasing power under the
injection of a holding beam [4], [5]. The underlying effect for
the bistability is the spatial hole burning induced nonlinearity.
The bistability at the lasing wavelength has been successfully
applied to obtain flip-flop operation [4] and all-optical packet
switching [6]. However, as illustrated in Fig. 1, the bistability is
not only present at the lasing wavelength, but also in the trans-
mission characteristics of the injected light. In this paper, we
will demonstrate with numerical and experimental results that
the transmission characteristic of the injected light can be used
to improve the bit error rate (BER), and is therefore, applicable
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for 2R regeneration in optical systems. The injected light can
have any wavelength outside the stopband of the DFB grating
resulting in broadband operation of the 2R regenerator. This is
a major advantage over 2R regenerators based on four wave
mixing [7] and injection-locking [8], [9].

To the authors’ knowledge, no research has been performed
yet on the influence of hysteresis for 2R regeneration. In [10]
and [11], a theoretical approach is given for hysteresis-based
detectors in networks to give a suboptimal solution for the mis-
match between the fixed bandwidth of electrical filters and the
different bit-rates present in an optical network. The experimen-
tal results that will be presented in this paper suggest that the
hysteresis in the transmission characteristic plays an important
role and we will give the basis for a theoretical analysis on 2R
regeneration with a hysteresis in the following section. Intu-
itively, one can consider that instead of a fixed decision level for
the zero’s and ones, the hysteresis causes the decision level to
change dynamically and therefore reduces the bit error rate of
a noisy signal. As outlined in [12] and [3], distinctive transfer
functions for the ones and zeros are necessary for improvement
of the BER of a signal. We follow a more intuitive approach but
the presence of a hysteresis suggests that this condition is ful-
filled and that our regenerator is what is called a class II optical
regenerator in [3].

II. THEORETICAL APPROACH

In this section, we will investigate the influence of a hysteresis
in the transmission characteristic of a 2R regenerator. The con-
cept is illustrated in Fig. 2. We assume a step function [Fig. 2(a)]
with a hysteresis of width h. When a noisy signal is sent through
the regenerator, a normal regenerator will distinguish between
the ones and zeros using a static decision level. We will assume
that the probability distribution function of noise on the one
(pdf1) and zero (pdf0) levels is equal and the optimal position
of the decision characteristic is at 1/2. We also assume that the
electrical SNR after the receiver is predominantly determined
by the optical signal to noise ratio before the receiver.

When we use a hysteresis in the transfer characteristic on
the other hand, the decision level will change dynamically with
the bit pattern. This will improve the BER because the transfer
function will be different for the ones and zeros [12]. As can be
seen in Fig. 2(c), the decision level will be lower for a one and
higher for a zero allowing a wider distribution of noise. There
is a small adverse effect caused by the increased threshold to
change from one state to the other, but we will demonstrate that
for small values of the hysteresis and fast regenerators this has
little or no influence.
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Fig. 1. Bistability in a DFB laser diode under injection of light at a different wavelength. (a) Schematic representation of a λ/4-shifted DFB laser. (b) Simulation
of transmission of light at a different wavelength through a DFB laser. (b) Corresponding laser output power.

Fig. 2. Concept of using a hysteresis for 2R regeneration (a) Transmission
characteristic of the regenerator, (b) original bit-pattern, (c) bit-pattern with
noise with a dynamically fluctuating decision level (orange) and static decision
level (dashed), (d) reconstructed bit pattern at the detector after regeneration
with hysteresis (orange) and without (dashed).

The textbook definition [13] for the BER is given in terms of
the probability P (0|1) of deciding zero when a one is expected
and the probability P (1|0) of deciding one when a zero is ex-
pected. Since 1 and 0 bits are equally likely to occur, the BER
can be defined as

BER =
1
2

(P (0|1) + P (1|0)) . (1)

Fig. 3. Asymptotical behavior of BER as a function of the Q-parameter for
different values of the hysteresis width h (and n → ∞).

Fig. 4. BER as a function of the Q-parameter at different time steps n for a
hysteresis with width h = 0.4. The dashed line represents the situation without
hysteresis.
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Fig. 5. Schematic of the setup. (LD: laser diode; LN: lithium–niobate modulator; PPG: pulse pattern generator; ATT: attenuator; EDFA: erbium-doped fiber-
amplifier; BERT: bit-error rate tester.

In case of standard Gaussian noise, the BER can be derived as
a function of the Q parameter [13] by

BER =
1
2

∫ 1/2

−∞
pdf1(P )dP +

1
2

∫ ∞

1/2
pdf0(P )dP (2)

=
1
2

erfc

(
Q√
2

)
(3)

where we assumed that the noise distribution on the ones and
zeros is the same. The Q-parameter in the above equation is
defined as the ratio between signal power and the standard de-
viation of the Gaussian noise distribution [13].

When a decision characteristic with a hysteresis is used [as in
Fig. 2(a)], we should consider a more complex analysis where
the output depends on the state in a previous time step. This
means that we will need to reconstruct the analysis to show how
the device will switch states during a single bit period. The noise
on these signals is mainly coming from ASE (amplified sponta-
neous emission) noise of the amplifiers and therefore fluctuating
very fast. If we assume that the device has a reaction time that
is significantly shorter than the duration of a single bit, we can
look at it from the point of view of the threshold level which will
change at the beginning of a bit period following a transition in
the bit sequence while the noise is changing throughout the bit
period. We will follow a similar procedure as in [11] and divide
the time window of one bit in N different time steps. The error
probability when there is no state difference will be lower than
considered with a standard fixed decision characteristic. There
is, however, also an adverse effect because of the higher thresh-
old of changing from a zero bit to a one bit and vice versa. In
the following analysis, we will show that this adverse effect can
be overcome when the regenerator acts faster than the duration
of individual bits and when the hysteresis is not very wide.

We can write the probability pxy |z to change from state x to
y while z is given, as follows:

p00|1 =
∫ (1+h)/2

−∞
pdf1dP =

1
2

erfc

(
(1 − h)

Q√
2

)

p10|1 =
∫ (1−h)/2
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pdf1dP =

1
2

erfc

(
(1 + h)

Q√
2

)

p01|0 =
∫ ∞

(1+h)/2
pdf0dP =

1
2

erfc

(
(1 + h)

Q√
2

)

p11|0 =
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(1−h)/2
pdf0dP =

1
2

erfc

(
(1 − h)

Q√
2

)
.

When using a hysteresis, the previous state is used to de-
termine the next state and a recursive expression for Pn (0|1)
(being the probability on time step n to decide zero when a one
is expected) can be written as

Pn+1(0|1) = Pn (0|1) p00|1 + Pn (1|1) p10|1

P1(0|1) =
1
2

p00|1 +
1
2

p10|1

and a similar equation for P (1|0). Because the noise distribution
on the ones is assumed similar to the noise distribution on the ze-
ros (p00|1 = p11|0 and p10|1 = p01|0) and P (1|1) = 1 − P (0|1)
we can write down the following recursive expression for the
BER:

BER(n + 1) = BER(n) p00|1 + [1 − BER(n)] p10|1 (4)

BER(1) =
1
2

p00|1 +
1
2

p10|1 . (5)

The second term of (4) appears to be dominant for realistic
values of the hysteresis (h < 1) and the bit error rate asymptot-
ically becomes equal to p10|1 after a sufficient amount of time
steps. This asymptotical bit error rate is depicted in Fig. 3 for dif-
ferent values of the hysteresis width. However, this figure does
not take into account the adverse effect of the higher threshold
for switching between two different states. As discussed above,
the bit error rate will improve during the time window of a sin-
gle bit. For high values of the hysteresis width, it will take more
time steps to achieve an improvement. The evolution of the BER
is depicted in Fig. 4 for different time steps n and a hysteresis
width h = 0.4. We can observe an improvement in bit error
rate after three time steps. This means that—according to this
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Fig. 6. BER as a function of the received optical power for different values of the OSNR, the power excess diagram and corresponding eye diagrams. (a) Input
OSNR of 19.83 dB; (b) input OSNR of 18.75 dB; (c) input OSNR of 17.74 dB; (d) excess penalty for a BER of 10−9 of the degraded and regenerated signal
compared to the original signal as a function of the input OSNR; (e) eye diagram of original signal from (a) at the receiver; (f) eye diagram of degraded signal;
(g) eye diagram of the regenerated signal without electric filter (receiver bandwidth of 33 GHz); (h) eye diagram of regenerated signal.

Fig. 7. Extinction ratio improvement.

model—the reaction time of the device should be four or five
times faster than the bit duration when h = 0.4. The number of
time steps needed for an improvement in bit error rate increases
with the hysteresis width, e.g., for a hysteresis of h = 0.1 there
is already an improvement in the second time step but it takes
15 time steps for a hysteresis width of h = 0.9.

We can conclude this section by stating that a hysteresis in
the transmission characteristic makes the decision threshold to

Fig. 8. OSNR in 0.1 nm at the output of the all-optical 2R regenerator as a
function of the input OSNR.

move dynamically with the signal. Therefore, the distinctive
transfer function for the ones and zeros allows to improve the bit
error rate. The theoretical model that is derived above, suggests
however that the response time of the regenerator should be
significantly faster with respect to the bitrate of the original
signal.
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Fig. 9. Wavelength independence: BER as a function of the received optical power for different transmission wavelengths.

III. EXPERIMENT

For the experiment, we use the setup as depicted in Fig. 5.
A pulse pattern generator (PPG) generates a pseudorandom bit-
sequence (PRBS) of 231 − 1 bits. The original signal is being
attenuated and amplified to decrease the OSNR. The regenerator
is a standard, nonoptimized λ/4-shifted DFB laser diode from
Alcatel-Thales with AR-coated facets. It has a κL value of 1.6,
a bias current of 150 mA and its central wavelength is 1553 nm.
Lensed fibers are aligned at both sides of the laser to couple the
light. The degenerated signal has an input power of 5–7 dBm
(depending on the power injected in the EDFA) and is combined
with a holding beam of 5 dBm (both measured in fiber after the
coupler). The holding beam is used to decrease the threshold for
bistability and can be adjusted by an attenuator. The width of the
bistability is approximately 1 dB wide (resulting in a value for
h between 0.1 and 0.2 in the analysis of Section II). An optical
bandpass filter with a width of 1 nm removes the lasing light
so that only the signal at the original wavelength is sent to the
preamplified receiver for a BER analysis. A variable attenuator
is used to change the received optical power on the receiver in
order to make BER-diagrams.

In Fig. 6(a)–(c), the BER diagrams as a function of the re-
ceived optical power are shown for different values of the EDFA
input power (and thus for different OSNRs). From these dia-
grams, it is clear that the 2R regenerator is able to improve the
degraded signal significantly. Its noise suppression capabilities
are demonstrated by Fig. 6(d) where the excess power penalty
for the regenerated and degraded signal compared to the original
signal are depicted as a function of the EDFA input power. The
corresponding eye diagrams for the regeneration are depicted
in Fig. 6(e)–(h). In Fig. 6(g), the regenerated signal is shown
without an electrical filter that is matched with the 10 GHz band-
width at the receiver side but on a regular optical scope with a
33 GHz bandwidth. This eye diagram illustrates that the regen-
erator might work also at higher bitrates. We want to point out
that our 2R regenerator with hysteresis even reduces the BER

when the degraded signal reaches the noise floor, determined
by the OSNR; something which is beyond the capabilities of
regenerators with a single decision level.

The extinction ratio improvement is depicted in Fig. 7. How-
ever, in this diagram, we did not take the influence of the 5 dBm
holding beam into account and an amplified signal without hold-
ing beam might result in a better extinction ratio improvement.
In Fig. 8, the OSNR at the output of the 2R regenerator is de-
picted as a function of the OSNR at the input. The OSNR is
measured by setting the resolution of the spectrum analyzer to
0.1 nm and determining the difference between the signal and
noise. The reduction of noise is important with regard to the
cascadability of the regenerators.

The 2R regenerator can work at any wavelength outside the
stopband of the DFB grating as illustrated for three arbitrary
wavelengths in Fig. 9. The BER diagrams for different injected
wavelengths are depicted and show broadband operation that is
only limited by the spectral width of the gain medium. The gain
medium in our device are quantum wells leading to a gain band-
width of approximately 20 nm. The small differences between
the graphs are mostly due to the spectral variation in gain of the
EDFA.

When we separate the signal at the lasing wavelength (instead
of the injected wavelength), we obtain the reversed, wavelength
converted signal. The noise floor is much higher and error-free
wavelength conversion was only obtained at a smaller bitrate of
3 Gb/s. This is because the carrier density changes much faster
than the laser signal which also depends on the cavity decay
time.

IV. CONCLUSION

A new concept for 2R regeneration is proposed using a hys-
teresis in the transmission characteristic. The concept is illus-
trated with experimental results showing bit error rate improve-
ment of a 10 GB/s NRZ signal using a single DFB laser diode.
The simplicity of the concept and the good performance make
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this regenerator suitable for application in optical access or
metro networks. Since direct modulation of DFB lasers has
been demonstrated at higher bitrates (up to 40 GHz), the pre-
sented technique might be also employed at higher speeds by
using optimalized designs.
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