

PHOTONICS RESEARCH GROUP

Advanced Germanium p-i-n and Avalanche Photodetectors for Low-power Optical Interconnects

Hongtao Chen Supervisor: Prof. Gunther Roelkens, Dr. Joris Van Campenhout

Motivation \rightarrow Low-power optical interconnects

Optical interconnects in data center

Mega-scale cloud data centers

A commercial optical transceiver cartoon

High Sensitivity Optical Receiver to Improve Power efficiency

CMOS 4λ -CWDM OOK optical transceiver

^{*}M. Rakowski, et al, "A 4x20Gb/s WDM Ring-based Hybrid CMOS Silicon Photonics Transceiver", *ISSCC*, 408 (2015).

Imec's silicon photonics platform

- State-of-the-art R&D platform for advanced device and system R&D
- 200 mm SOI wafers, 220 nm top Si, 160 nm polySi
- Integration Flow based on a 130-nm CMOS node/toolset augmented with 100% selective Ge epitaxy module
- 193-nm lithography for critical waveguide patterning steps.
- Available for bilateral development on demand and through MPW service (ePIXfab)

Outline

- Motivation
- Si-contacted Ge p-i-n Photodetectors
 - o 400nm-Ge Si-LPIN GePD
 - 160nm-Ge Si-LPIN GePD
- Low-voltage Ge Avalanche Photodetectors
 - 400nm-Ge VPIN GeAPD
 - 185nm-Ge VPIN GeAPD
- Summary

Ge-on-Si Waveguide p-i-n photodetectors

Photo-carriers generation & collection

Responsivity

- The capability of a p-i-n photodetector to convert an optical signal into an photocurrent,
- The ratio of the generated photocurrent and incident optical power,
- Light absorption
- Photo-carriers collection

imec 8

Dark current

The small electric current that flows through a p-i-n photodetector when no photons are entering the device

- Diffusion current
- SRH leakage current
 - Material defects
 - Ge passivation

Ge-on-Si SEM graph

A typical photodiode I-V characteristic

SRH leakage current source modeling

O/E bandwidth

The capability of a p-i-n photodetector to respond to a fast modulated optical signal.

- Transit time
- RC-constant

An ideal OOK modulated optical signal

p-i-n photodetector model

Outline

- Motivation
- Si-contacted Ge p-i-n Photodetectors
 - o 400nm-Ge Si-LPIN GePD
 - 160nm-Ge Si-LPIN GePD
- Low-voltage Ge Avalanche Photodetectors
 - 400nm-Ge VPIN GeAPD
 - 185nm-Ge VPIN GeAPD
- Summary

400 nm-Ge Si-LPIN GePD

Si-LPIN GePD:

- Higher responsivity
- Higher O/E bandwidth
- Lower dark current

Static, Small & Large-signal Measurement Data at 1550 nm

40

40

11 nA

>50 GHz

50

50

3 nA

20 GHz

28 Gb/s OOK-NRZ eye

Dark current

O/E bandwidth

PHOTONICS RESEARCH GROUP

Outline

- Motivation
- Si-contacted Ge p-i-n Photodetectors
 - 400nm-Ge Si-LPIN GePD
 - 160nm-Ge Si-LPIN GePD
- Low-voltage Ge Avalanche Photodetectors
 - 400nm-Ge VPIN GeAPD
 - 185nm-Ge VPIN GeAPD
- Summary

160nm-Ge Si-LPIN GePD

3-D & cross sectional schematic

High responsivity & Low dark current

Static and Small-signal Measurement Data

50 GHz S₂₁ measurement

Large-signal Data Reception Measurement

Generating 80 Gb/s modulated optical signal through Optical Time Domain Multiplexing

*Implemented in DTU Fotonik, Denmark

Large-signal Data Reception Measurement

70 GHz comerc. PD

at -1 V

(u2t XPDV-3120R)

at -2 V

80 Gb/s eye diagrams

100 Gb/s eye diagrams

Eye height: 34 mV

Clear open eye diagrams obtained at 100 Gb/s

Ge p-i-n PD: Benchmark

Outline

- Motivation
- Si-contacted Ge p-i-n Photodetectors
 - 400nm-Ge Si-LPIN GePD
 - 160nm-Ge Si-LPIN GePD
- Low-voltage Ge Avalanche Photodetectors
 - o 400nm-Ge VPIN GeAPD
 - 185nm-Ge VPIN GeAPD
- Summary

Pursuing Even Higher Sensitivity By Leveraging Avalanche Multiplication

*Eduard Sackinger, Broadband Circuits for Optical Communications.

Avalanche gain

S-A-C-M Ge/Si Avalanche Photodiode

 $\begin{bmatrix} 10^{5} \\ Ge (111) \\ Si (\alpha) \\ Si (\alpha) \\ Si (\beta) \\ Si (\beta) \\ Ge (111) \\ Si (\alpha) \\ Si (\beta) \\ Si (\beta) \\ Ge (111) \\ G$

Impact ionization

Impact ionization coefficient:

(α, electrons; β, holes)the number of electron-hole

pairs generated by a carrier per unit distance traveled

Gain-bandwidth product ← build-up time

O/E bandwidth as a function of gain

*Simon M. Sze, Physics of Semiconductor Devices

Excess noise factor

Avalanche sensitivity improvement

$$(i_{S})^{2} = 2 \times q \times I_{0} \times M^{2} \times F(M) \times B$$

Noise current
power
Gain
Excess noise
factor

imec 24

Outline

- Motivation
- Si-contacted Ge p-i-n Photodetectors
 - 400nm-Ge Si-LPIN GePD
 - 160nm-Ge Si-LPIN GePD
- Low-voltage Ge Avalanche Photodetectors
 - o 400nm-Ge VPIN GeAPD
 - 185nm-Ge VPIN GeAPD
- Summary

400 nm-Ge VPIN GeAPD

3-D & cross sectional schematic

Doping concentration (cm⁻³)

ElectricField (V/cm)

Doping & electric field distribution

- |E| ~ 2×10⁵ V/cm confined in the bottom 200 nm Ge layer at -5.5 V bias,
- \rightarrow Strong avalanche multiplication expected,

Extracted from raw S₂₁ curves

imec 27

Optical Receiver Sensitivity Measurement Data

- *Custom TIA design from INTEC_design,
- ✓ 130 nm SiGe BiCMOS technology,
- ✓ 1.2 µA input referred (RMS) noise current at 10 Gb/s,
- (2³¹-1) PRBS NRZ modulation
- Operate at 1550 nm,
- Commercial LA used after TIA,

^{*}X. Yin et al., IEEE ISSCC Dig. Tech. Papers, 416 (2012).

- 10 Gb/s bit error ratios for various bias voltages
- 5.8 dB avalanche sensitivity improvement at -5.9 V APD bias
- -23.2 dBm absolute sensitivity

Outline

- Motivation
- Si-contacted Ge p-i-n Photodetectors
 - 400nm-Ge Si-LPIN GePD
 - 160nm-Ge Si-LPIN GePD
- Low-voltage Ge Avalanche Photodetectors
 - 400nm-Ge VPIN GeAPD

185nm-Ge VPIN GeAPD

Summary

185 nm-Ge VPIN GeAPD

3-D and cross sectional schematic

 \rightarrow Better avalanche performance expected

Doping & electric field distribution

Avalanche performance

PHOTONICS RESEARCH GROUP

Avalanche performance

imec 32

Optical Receiver Sensitivity Measurement Data

*B. Moeneclaey, et al., IEEE PTL, 27(13), 1375 (2015)

Ge APD: Benchmark

Outline

- Motivation
- Si-contacted Ge p-i-n Photodetectors
 - o 400nm-Ge Si-LPIN GePD
 - 160nm-Ge Si-LPIN GePD
- Low-voltage Ge Avalanche Photodetectors
 - 400nm-Ge VPIN GeAPD
 - 185nm-Ge VPIN GeAPD

Summary

Summary

High performance Ge p-i-n PD demonstrated,

-1 V	Responsivity (A/W)		O/E bandwidth (GHz)		Dark current
	1550 nm	1310 nm	1550 nm	1310 nm	
400-nm Ge	> 1 A/W in the C-band		20	NA	3 nA
160-nm Ge	0.74	0.92	67	44	3 nA

Low-voltage Ge APD demonstrated,

	Gain-bandwidth product (GHz)	Avalanche sensitivity improvement (dB)	Absolute sensitivity (dBm)
*400-nm Ge	100	5.8	-23.2
**185-nm Ge	140	6.2	-17.4

*- 10 Gb/s at -5.9 V APD bias (1550 nm)	**- 20 Gb/s at -5 V APD bias (1310 nm)
- TIA input referred (RMS) noise	- TIA input referred (RMS) noise
current, 1.2 μA;	current, 2.0 μA;

Acknowledgement

- IMEC Si photonics Team,
 - Joris Van Campenhout, Peter Verheyen, Geert Hellings, Jeroen De Coster, Guy Lepage, ...
- Photonics Research Group Team
- Intec Design Team,
 - Jochem Verbist, Bart Moeneclaey, Xin Yin (Scott), Johan Bauwelinck,

