

Silicon Nano-Photonics based Arrayed Waveguide Gratings

Shibnath Pathak

Promotors: Prof. Wim Bogaerts & Prof. Dries Van Thourhout

Promotors: Prof. Wim Bogaerts & Prof. Dries Van Thourhout

Evolution in Communication

Evolution in Communication

Photonics Research Group

Global Mobile Data Traffic Forecast

Global Mobile Data Traffic Forecast

Optical Fiber

Photonics Research Group

Optical Fiber

Optical Fiber

Wavelength Division Multiplexing (WDM)

Wavelength Division Multiplexing (WDM)

Photonics Research Group

Silicon AWG

40 X 100 GHz Silica AWG

Bend Radius 1mm Core 3.5X3.5 µm² Device Size 9X12 mm² n_core = 1.482 n_clad = 1.44 64 X 50 GHz InP AWG

Bend Radius 0.5mm Core 2.0X0.5 μ m² Device Size 3.6X7 mm² n_core = 3.3 n_clad = 1. 16 X 200 GHz Silicon AWG

11

Bend Radius 0.005mm Core 0.8X0.22 µm² Device Size 0.850X0.340 mm² n_core = 3.48 n_clad = 1.44

Photonics Research Group

Arrayed Waveguide Grating (AWG)

Problems in Silicon AWG

- High Insertion Loss
- High Crosstalk
- Channel Spacing Mismatch
- Round Top

High Sensitivity

wire width

$$\frac{\partial \lambda}{\partial w} \approx 1^{nm}/nm$$

wire height

$$\frac{\partial \lambda}{\partial h} \approx 2^{nm}/nm$$

temperature

$$\frac{\partial \lambda}{\partial T} \approx 0.08 \, \frac{nm}{K}$$

Good geometry control is required

Structure the outline

+ Our approach+ Our results+ Conclusions

Structure the outline

- Our approach
 - •Design
 - •Simulation
 - •Fabrication
 - •Measurement
- + Our results+ Conclusions

Framework

Framework

IPKISS

Photonics Research Group

Design Parameters

Phase Fronts in Array waveguides

$$\underline{\lambda = \lambda_0} \qquad \Delta L = m \frac{\lambda_0}{n_c(\lambda_0)} \implies \lambda_0 = \frac{n_c \Delta L}{m} \qquad \underline{\lambda < \lambda_0}$$

(b) Phase relation for $\lambda < \lambda_0$

Framework

IPKISS

Photonics Research Group

Design of Silicon AWG

Framework

IPKISS

Photonics Research Group

Simulation of the AWG: Decomposition

Photonics Research Group

Simulation of the AWG

Framework

IPKISS

Photonics Research Group

imec 32

Characterization

Fabrication

Framework

IPKISS

Photonics Research Group

Automatic Setup

Photonics Research Group
Layout – Simulation Fabrication– Measurements (16x200 GHz AWG)

Structure the outline

- + Our approach
- Our results
 - •Insertion Loss and Non–uniformity
 - Crosstalk
 - Channel mismatch
 - Round top to flattop
 - Switch

+ Conclusions

Problems in Silicon AWG

- High Insertion Loss
- High Crosstalk
- Channel Spacing Mismatch
- Round Top

Insertion Loss of AWG

Propagation loss of a Si wire: 2dB/cm

For a 12X400 GHz AWG Path travel by the Light is: ~1 mm

Insertion Loss of AWG: Design improvement

Side channel will have 3dB extra loss compare to the Center Channel

Add more waveguides Narrow down the arm apertures Constant focus

Non–uniformity should improve

Insertion Loss and non-uniformity

Structure the outline

- + Our approach
- Our results
 - •Insertion Loss and Non–uniformity
 - Crosstalk
 - Channel mismatch
 - Round top to flattop
 - Switch

+ Conclusions

Problems in Silicon AWG

- High Insertion Loss
- High Crosstalk
- Channel Spacing Mismatch
- Round Top

Crosstalk: Phase error

perfeetly-tiontdelleydlidedayshallecorroributions autipuetin phase

Crosstalk of AWG: mask grid

					_		

Length deviation

a is mask grid width

Photonics Research Group

imec 51

Photonics Research Group

imec 52

Crosstalk of AWG: Measured 16X400 GHz AWGs

Structure the outline

- + Our approach
- Our results
 - •Insertion Loss and Non–uniformity
 - Crosstalk
 - Channel mismatch
 - Round top to flattop
 - Switch

+ Conclusions

Problems in Silicon AWG

Channel spacing mismatch

fitted channel spacing

Formula for output position

Formula 1

$$\sin\theta = m \cdot \frac{\mathbf{n}_{wg}(\lambda) \cdot \lambda_c - \mathbf{n}_{wg}(\lambda_c) \cdot \lambda}{\mathbf{n}_{wg}(\lambda_c) \cdot \mathbf{n}_{slab}(\lambda) \cdot \mathbf{d}_a}$$

Theoretically more accurate formula but need accurate n_{wg} for all wavelengths

Formula 2

$$\frac{\mathrm{d}\theta}{\mathrm{d}\nu} = -\frac{m\lambda_c^2 \mathbf{n}_{g,wg}}{\mathbf{n}_{slab} \mathbf{n}_{wg}(\lambda_c) \mathbf{d}_a c}$$

Theoretically less accurate formula but need accurate n_{wg} for center wavelength and accurate n_{group}

Improvement in channel spacing: 12x200 GHz AWG

Formula 2

Best fitted channel spacing 201.9 GHz

Maximum deviation 19.0 GHz

Formula 1

Maximum deviation 12.9 GHz

Structure the outline

- + Our approach
- Our results
 - •Insertion Loss and Non–uniformity
 - Crosstalk
 - Channel mismatch
 - Round top to flattop
 - Switch

+ Conclusions

Problems in Silicon AWG

MMI aperture: Simulation

Fabricated MMI-AWG

MMI aperture

Measurement Results of MMI-AWG

Problems in Silicon AWG

Structure the outline

- + Our approach
- Our results
 - •Insertion Loss and Non–uniformity
 - Crosstalk
 - Channel mismatch
 - Round top to flattop
 - Switch

+ Conclusions

Photonics Research Group

imec 69

Measurement of the switching state

Structure the outline

- + Our approach
- + Our results
- Conclusions
 - •comparison with other filters
 - •comparison with the world
 - •summary

Comparison between the Filters

Comparison with the world

Photonics Research Group

Summary

We studied AWGs on silicon

-We developed a full method for

design-simulation-fabrication- characterization We approached several problems of AWGs, with significant improvements

- loss and uniformity
- grid snapping
- flat top
- channel spacing

We made an active AWG switch in silicon

http://photonics.intec.ugent.be

Thank You