
Chapter 5

Dielectric waveguides
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5.1 Introduction

During the last decade, the application of complex optical systems has enormously grown. These
systems are applied in such different areas as optical fiber telecommunication, optical datacom,
optical data storage (CD-ROM,DVD, Blue-Ray), sensors, printers and many more. Classical op-
tical systems consist of a collection of separate optical components (lenses, mirrors, diffractive
elements, light sources, light detectors), which are carefully assembled together. Typically all
components need to be aligned very accurately with respect to each other, which makes these
systems large, less robust and expensive. In the same way as electronics evolved from discrete
components on printed circuit boards to monolithic integrated circuits, also in optics a miniatur-
ization and integration process is ongoing however. The idea of integrated optics was introduced
in the late 60s and comprises the integration of different optical functionalities onto a single sub-
strate. To route the light through the components, optical waveguides are used instead of free
space propagation. In the early days of integrated optics, most activities were focused on the
development of single components, both passive (couplers, filters) and active (lasers, detectors).
Later focus shifted towards bringing these different functions together on a single chip. This led to
state-of-the-art components consisting of a combination of different complicated subcomponents.
A typical example demonstrating the strength of optical integration is shown in figure 5.1. The left
picture shows a fiber-based 4-channel 2x2 cross-connect module while the right picture shows an
integrated device with the same functionality. It is obvious that the latter has a size several orders

5–1



Figure 5.1: Left: compact fiber-based 4-channel 2x2 cross-connect module (Telefonica I&D, Madrid). Right:
Photonic integrated 4-channel 2x2 cross-connect module (Cobra Institute, TU/e)

of magnitude smaller than the discrete device. This type of complex integrated components is
currently in a research phase but there is a rapid evolution towards commercial applications.

The fundamental idea behind integrated optics is the manipulation of light by waveguides and not
by free space optical components like lenses and mirrors. The optical field is guided by dielectric
waveguide structures, which is possible because light prefers to be concentrated in the area with
the highest refractive index. Figure 5.2 represents different types of waveguides that are used in
integrated optics. The optical field will always be located in the area with the highest average
refractive index.

The depicted waveguide structures can be realized in different material systems. Each material
system has its own advantages and drawbacks. So for every specific application one will have
to make a well-considered decision for a given material system. Below the properties of some
important material systems are listed.

• InGaAsP/InP

This crystalline semiconductor material allows for monolithic integration, being the integra-
tion of laser diodes and photodiodes together with passive components. This can be done in
the 1.3µm and 1.5µm wavelength range where the optical fiber has the lowest loss. Waveg-
uides are formed by epitaxial layer growth on an InP substrate and by etching. Due to the
high refractive index and the high index contrasts, waveguide structures typically are small
(order 1-2µm), which can lead to problems when coupling light from an optical fiber into the
waveguide.

• AlGaAs/GaAs

This crystalline semiconductor material allows for monolithic integration in the 0.8µmwave-
length range. The corresponding components are mostly used for short distance communi-
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Figure 5.2: Different waveguide structures
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cation, in scanners and in CD-players. The same remarks as in the InP/InGaAsP material
system concerning coupling to an optical fiber hold.

• Glass

Waveguides in glass are fabricated using two different types of technologies: diffusion and
deposition. The first technique is based on the ion exchange process in special types of
glasses by pure thermal or field assisted diffusion. The second technique is based on the
deposition of glass (Silica or SiO2) by means of chemical vapour deposition (CVD) or flame
hydrolysis (FHD) on a substrate, mostly Silicon. The large waveguide cross-section allows
easy coupling with optical fibers. These are currently the preferred methods for fabricating
passive optical integrated circuits. Because of the low index contrast, devices are relatively
big however.

• LiNbO3

Lithium niobate is an anisotropic crystalline material with strong electro-optical and acousto-
optical properties. Waveguides are fabricated using a diffusion process. Due to the anisotropy
components always show a large polarization dependence. The electro-optical effect is used
to realize efficient optical switches.

• Polymers

Polymers represent a broad set of materials. For purely passive applications polycarbonate
(also used for compact disks) and PMMA are the preferred materials. Other types of poly-
mers show a large electro-optical or non-linear coefficient but this is mostly at the expense
of a reduced long term stability.

• Silicon-on-Insulator

Waveguides are fabricated in a Silicon layer (high refractive index), which is bonded on a
Silicon wafer via an intermediary silica layer (low refractive index). SOI waveguides exist in
two different varieties with very different properties: ”fiber matched” (typical dimensions
around 7µm) and high-contrast (typical dimensions 500nm). The advantage of using Silicon-
on-Insulator is that standard CMOS technology can be used to fabricate the waveguides.
Even CMOS-electronics and optical circuits can be combined on the same substrate. The
high-contrast waveguides open the way to very large scale integrated optics.

For a long time, III-V technologies were thought to push aside other technologies because they
were the only ones allowing for monolithic integration. But due to the complicated fabrication
process, the high cost, the high fiber to chip coupling losses and the high propagation losses of III-
V waveguides, different material systems tend to co-exist, each used for their specific application.
The chart below gives an overview of the most important properties of the materials discussed
here (T: Telecom / I: Interconnect).
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InP GaAs Glass LiNbO3 Polymers SOI
Transmitters/Receivers Yes Yes No No No No
Passive optics Yes Yes Yes Yes Yes Yes
Wavelength range T I T,I T,I T,I T
Fiber to chip coupling loss >2 >2 0.4 <1 <0.5 1
Propagation losses (dB/cm) 2 2 <0.1 <0.3 0.1-1.5 2
dn/dT [10−4/K] 1.8 2.5 <0.1 <0.1 0.1-1.5 1.7
|nTE − nTM| [10−4] 0.1-10 2-10 0.1-0.5 400 2-50 0.1-...
long term stability + + + + ? +
wafer dimensions 2-3 inch 3 inch ≥ 4 inch 3 inch ≥ 8 inch 8-12 inch

Fiber to chip coupling losses can be improved by the use of tapers.

5.2 Modes of Optical Waveguides

5.2.1 Introduction

The starting point for the theoretical treatment of the interaction of light and dielectric structures
are Maxwells equations. We only assume isotropic and non-magnetic media and a harmonic time
dependence of ejωt. In this case, and in the absence of sources and currents, we can write Maxwells
equations as (see also chapter 2):

∇× E(x, y, z) = −jωµ0H(x, y, z)
∇×H(x, y, z) = jωε(x, y, z)E(x, y, z)
∇ · (ε(x, y, z)E(x, y, z)) = 0
∇ ·H(x, y, z) = 0

(5.1)

In these equations the constitutive relations

D = εE = ε0n
2E

B = µ0H
(5.2)

are implicitly assumed. The real part of the refractive index profile n(x, y, z, ω) relates the wave-
length inside the medium λ = λ0

Re(n) and the vacuum wavelength λ0. The imaginary part of the
refractive index describes the absorption (or gain) of the optical field.

Based on the Maxwells curl equations, vectorial wave equations for the electric field E and mag-
netic field H can be written as

∇2E(r) +∇(∇n
2(r)

n2(r) E(r)) + k2
0n

2(r)E(r) = 0

∇2H(r) + ∇n2(r)
n2(r) × (∇×H(r)) + k2

0n
2(r)H(r) = 0

(5.3)

In these equations the gradient of the refractive index occurs, which couples the three components
of the field vector. When the refractive index is piecewise constant however, or if the variation
of the refractive index is small, we can neglect these gradients so both vectorial equations (5.3)
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decouple and reduce to the Helmholtz equation for every component of the field vector (both
electric and magnetic field)

∇2Ψ(r) + k2
0n

2(r)Ψ(r) = 0 (5.4)

For the further study of optical waveguides, the boundary conditions at the interface between two
isotropic materials with dielectric constants ε1 and ε2 are important. These are:

n× (E1 − E2) = 0
n× (H1 −H2) = 0
n · (ε1E1 − ε2E2) = 0
n · (H1 −H2) = 0

(5.5)

, which means that the tangential components of the electric and the magnetic field and the normal
component of the magnetic field are continuous at an interface. The normal component of the
electric field is discontinuous at an interface.

By applying these boundary conditions the field components will in general be related (although
they seemed to be uncoupled by neglecting the refractive index gradient terms in equation (5.3)).
Note that it is often sufficient to apply the boundary conditions for the tangential components
because then automatically the boundary conditions for the normal components are met.

The general solution of Maxwells equations for an arbitrary dielectric structure ε(x, y, z) requires
the solution of a complex set of partial differential equations and requires a lot of computation
power. Therefore, in the early days of integrated optics, a lot of effort was put in the development
of acceptable approximated calculation methods. A typical example is the effective index method.
As more powerful computers became available, numerical methods like finite differences and fi-
nite elements methods were used for the analysis of waveguide structures. Nevertheless, approx-
imated solutions in general and the effective index method in particular remain very important
design and modeling tools. Some of the methods will be described later in this chapter.

5.2.2 Modes of longitudinally invariant dielectric waveguide structures

In this section we will consider waveguide structures that are invariant in the propagation direc-
tion of the optical power. A typical example is shown in figure 5.3. When we choose the z-direction
as the propagation direction we can write the refractive index profile as n(r) = n(x, y)

An eigenmode of the waveguide structure is a propagating or evanescent wave of which the
transversal shape does not change during propagation. An eigenmode propagating in the pos-
itive z-direction is represented by

E(r) = e(x, y)e−jβz

H(r) = h(x, y)e−jβz
(5.6)

Three different parameters can be used to describe the propagation characteristics of the eigen-
mode. The first parameter is the propagation constant β, the second is the effective refractive
index
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Figure 5.3: Longitudinally invariant waveguide

neff =
β

k0
(5.7)

and the third parameter is the effective dielectric constant

εeff = n2
eff (5.8)

In the following section we will show that this is the eigenvalue of the eigenvalue equation re-
sulting from Maxwells equations and for which the eigenmodes are the solutions we are looking
for. Before we continue with a detailed analysis of the eigenvalue problem, we will first list some
important properties of lossless optical waveguides, namely waveguides for which

Im(ε(x, y)) = 0 (5.9)

Figure 5.4 shows the dielectric profile of a hypothetic waveguide together with different eigen-
modes of the structure. Theoretically one can show that

1. There are no eigenmodes with an eigenvalue larger than the maximum of the dielectric func-
tion.

εeff < max(ε(rt)) (5.10)

2. Guided modes belong to a discrete set of eigenvalues. These are in the range

εmax > εeff > max(εclad) (5.11)

For these modes
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Figure 5.4: Eigenmodes in an optical waveguide

lim
|rt|→∞

Ψ(rt) = 0 (5.12)

Note that there are waveguide structures that do not support a guided mode.

3. The continuous part of the spectrum is formed by the radiating modes for which the eigen-
values

εeff < max(εclad) (5.13)

Radiating modes show an oscillating behaviour along at least one side of the waveguide
structure. Depending on their effective refractive index they are classified as propagating or
evanescent radiating modes. In the last case the effective refractive index is purely imagi-
nary.

4. Guided and radiating modes form a complete set of functions. This means that every field
inside the waveguide can be represented by a sum of these modes:

E(x, y, z) =
∑
m

amem(x, y)e−jβmz +
∫
a(k)ek(x, y)e−jkzdk (5.14)

In this equation we can see the discrete sum of the guided modes and the continuous spec-
trum of radiating modes.

Note that a radiating mode can be associated with a plane wave incident from the side (figure
5.5).

5.2.3 The slab waveguide

A further simplification to analyze waveguide structures is to consider waveguide structures that
are not only invariant in the propagation direction but also in the direction perpendicular to the
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Figure 5.5: Radiating mode

Figure 5.6: Slab waveguide

propagation direction as shown in figure 5.6. These slab waveguides are in practice hardly used
but their analysis is the starting point of many approximated theories and so called slab solvers
are the basis of many simulation tools for optical waveguides.

We can rewrite equation (5.6) as

E(r) = e(x)e−jβz

H(r) = h(x)e−jβz
(5.15)

Substituting these equations in Maxwells curl equations leads to two sets of equations for the
so called transverse electric (TE) and transverse magnetic eigenmodes, characterized by the field
components ey(x), hx(x), hz(x) and hy(x), ex(x), ez(x) respectively:

5–9



TE


βey(x) = −ωµ0hx(x)
dey(x)
dx = −jωµ0hz(x)

ω0ε0n
2(x)ey(x) = −βhx(x) + j dhz(x)

dx

TM


βhy(x) = ωε0n

2(x)ex(x)
dhy(x)
dx = jωε0n

2(x)ez(x)
ωµ0hy(x) = βex(x)− j dez(x)

dx

(5.16)

in which εr(x) is replaced by n2(x). By eliminating the x and z field components we can derive a
second order differential equation for ey(x) and hy(x) respectively:

d2ey(x)
dx2 + k2

0n
2(x)ey(x) = β2ey(x)

d
dx( 1

k2
0n

2(x)

dhy(x)
dx ) + hy(x) = β2

k2
0n

2(x)
hy(x)

(5.17)

An important type of slab waveguide is the so called multi layer slab waveguide. This waveguide
consists of a number of layers with refractive index ni. Because the refractive index is piecewise
constant in the multi layer slab waveguide, we can rewrite equations 5.17 as

d2ey,i(x)
dx2 + k2

0n
2
i ey,i(x) = β2ey,i(x)

d
dx( 1

k2
0n

2
i

dhy,i(x)
dx ) + hy,i(x) = β2

k2
0n

2
i
hy,i(x)

(5.18)

and the TE and TM equations become identical. Solutions will be different however because of
the different boundary conditions for TE and TM field components at the interfaces between the
different layers. We will continue to work with the TE equation, in order not to overload the
notation. The analysis for the TM equation is similar.

The general solution to equation 5.18 can be written as

ey,i = Aie
jkx,i(x−ai) +Bie

−jkx,i(x−ai) (5.19)

with

kx,i =
√
k2

0n
2
i − β2 (5.20)

The used notations are clarified in figure 5.7.

Based on equations 5.5 we can derive the following boundary conditions for the interface between
two layers:

{
ey,i(ai) = ey,i+1(ai)
dey,i(ai)

dx = dey,i+1(ai)
dx

(5.21)

apply. Using equations 5.21 and 5.19 we can derive the following matrix relation:
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Figure 5.7: Multi layer slab waveguides

[
Ai
Bi

]
=

1
2αi

[
(αi + αi+1)e−δi+1 (αi − αi+1)eδi+1

(αi − αi+1)e−δi+1 (αi + αi+1)eδi+1

] [
Ai+1

Bi+1

]
(5.22)

By repeating this procedure for all layers, the following matrix equation can be derived:

[
A1

B1

]
=
[
t11(β2) t12(β2)
t21(β2) t22(β2)

] [
AN
BN

]
(5.23)

For guided modes

lim
x→±∞

ey(x) = 0 (5.24)

and because β > k0nN and β > k0n1 we can write that A1 = BN = 0 (if we choose +j as the
solution to

√
−1). From equation 5.23 we can see that this can only be fulfilled if t11(β2) = 0. The

solutions to this dispersion equation yield the guided modes of the structure. Note that this matrix
description actually is identical to the analysis for the reflection and transmission of a plane wave
at a layer stack discussed in the previous chapter.

Finding the solutions to the dispersion equation has to be done numerically. Only in the case of a
3-layer slab waveguide some interesting properties can be derived analytically.

In the case of a 3-layer slab waveguide, equation 5.19 can be written as (with the notations as
depicted in figure 5.2.3)


ey = Ae−δx (x ≥ 0)
ey = A cos(κx) +B sin(κx) (− d ≤ x ≤ 0)
ey = (A cos(κd)−B sin(κd))eγ(x+d) (x ≤ −d)

(5.25)

With
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Figure 5.8: Three layer slab waveguide

δ =
√
β2 − n2

3k
2
0

κ =
√
n2

1k
2
0 − β2

γ =
√
β2 − n2

2k
2
0

(5.26)

Hereby we already used the first of the boundary conditions (5.21). To determine A andB we also
have to apply the second boundary condition of (5.21). In this way we find following transcen-
dental equation (for TE slab modes):

tan(κd) =
κ(γ + δ)
κ2 − γδ

(5.27)

This is an eigenvalue equation for β with discrete solutions.

For TM slab modes one can find that this transcendental equation can be written as

tan(κd) =
κ(γ n

2
1

n2
2

+ δ
n2

1

n2
3
)

κ2 − γ n
2
1

n2
2
δ
n2

1

n2
3

(5.28)

With each eigenvalue β an eigenmode can be associated. Often an ω-β diagram is used, being the
graphical representation of the dispersion relation for the different eigenmodes. To get a graph
(i.e. for the TE polarized slab modes), which is generic, a number of normalized units are used:
the normalized frequency ν, the relative effective index b and the asymmetry factor aTE . These
are defined as:
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Figure 5.9: Waveguide dispersion curves

ν = k0d
√
n2

1 − n2
2

b =
n2
eff−n

2
2

n2
1−n2

2

aTE = n2
2−n2

3

n2
1−n2

2

(5.29)

These definitions result in the dispersion curves depicted in figure 5.9 for TE eigenmodes (for
different values of the asymmetry factor aTE .

The number of guided TE modes can be calculated from equation 5.50 to 5.27:

M = 1 + Int[
1
π

(ν −Arctan(
√
aTE)] (5.30)

In this equation Int[. . . ] means the integer part of the argument. For symmetrical waveguides this
formula is simplified to M = 1 + Int[ νπ ]. So there is at least 1 guided mode. In the case of a sym-
metrical waveguide knowing the normalized frequency ν is sufficient to determine the amount of
guided modes. Therefore this number is frequently used when describing optical waveguides.

Note that the effective index can be considered as some kind of average refractive index felt by
the guided mode. In this context we can also define the confinement factor Γ. It is defined (for TE
polarization) as

ΓTEi =

∫
iE

2
ydx∫ +∞

−∞ E2
ydx

(5.31)

and is a measure for the confinement of the eigenmode inside layer i. Obviously
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N∑
i=1

ΓTEi = 1 (5.32)

The confinement factor is often used in the theory of laser operation, to denote which part of the
optical power is located inside the active layer, where there is gain.

5.2.4 The effective index method

Lets return to the two-dimensional waveguide. For many waveguide types the lateral dimensions
are larger than the transversal dimensions. Moreover, the vertical index contrast often is very low.
In that case, the modes of the waveguide often will show a quasi-TE or quasi-TM behaviour and
can be approximately described by the scalar Helmholtz equation. The effective index method
gives an approximate solution to this equation.

As said, the starting point for the effective index method is the scalar Helmholtz equation:

∇2Ψ(x, y, z) + k2
0n

2(x, y)Ψ(x, y, z) = 0 (5.33)

In this equation Ψ can be replaced by any of the field components. Because we are still considering
longitudinally invariant waveguide structures, the z dependence of Ψ(x, y, z) is given by

Ψ(x, y, z) = ψ(x, y)e−jβz (5.34)

This way, equation (5.33) becomes

∇2
xyψ(x, y) + (k2

0n
2(x, y)− β2)ψ(x, y) = 0 (5.35)

This equation can be solved in a number of ways. A first method is the effective index method
which is an approximate solution. We start from the assumption that we can write

ψ(x, y) = F (x, y)G(y) (5.36)

in which F (x, y) is a slowly varying function of y, so that we can write that

∂F

∂y
= 0 (5.37)

Substitution of equation 5.36 in equation 5.35 leads to

F (x, y)
d2G(y)
dy2

+ 2
∂F (x, y)
∂y

dG(y)
dy

+G(y)
[
∂2F (x, y)
∂x2

+
∂2F (x, y)
∂y2

]
+ (n2k2

0 − β2)F (x, y)G(y) = 0

(5.38)
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Figure 5.10: Effective index method

Using equation 5.37 this becomes

1
G

d2G

dy2
+

1
F

∂2F

∂x2
+ (k2

0n
2(x, y)− β2) = 0 (5.39)

We now apply a technique closely resembling the classical technique of separation of variables.
The only difference is that F (x, y) shows a weak dependence on y and that we have to introduce
an y-dependent separation variable neff (y). This way we find

1
F
∂2F
∂x2 + k2

0n
2(x, y) = k2

0n
2
eff (y)

1
G
d2G
dy2 − β2 = −k2

0n
2
eff (y)

(5.40)

These are the fundamental equations of the effective index method. Lets consider the first equa-
tion. We divide the two dimensional waveguide in slices for which we can assume the refractive
index profile as being independent of y. This is very easy for piecewise constant refractive in-
dex profiles but is also possible for a continuously varying index profile by applying a staircase
approximation (figure 5.10).

Equation (5.40) then reduces to

∂2Fi
∂x2

+ k2
0n

2
i (x)Fi = k2

0n
2
eff,iFi (5.41)

If we compare this equation with equation (5.17a) then it is clear that neff,i is the effective index
of a one dimensional slab waveguide with a refractive index profile ni(x). The corresponding
mode profile determines Fi(x). Solving the first equation of (5.40) leads to an effective index
distribution neff (y). Using this function we can solve the second equation of (5.40). This equation
can be rewritten as
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Figure 5.11: one dimensional equivalent

d2G

dy2
+ (k2

0n
2
eff (y)− β2)G = 0 (5.42)

Again, this is the equation for a one dimensional slab waveguide with refractive index profile
neff (y). Solving this equation results in the propagation constant β and the mode profile G(y).

Although this method is in principle a scalar method, it still allows to take the polarization of the
mode ψ(x, y) into account. Say we are interested in the TE eigenmode of the two dimensional
waveguide. The electric field vector of the mode is pointing along the y-axis, just like for the TE
slab modes Fi(x). To keep the same polarization state for the second equation this equation has to
be solved for TM polarization. To calculate the TM eigenmode of the two dimensional waveguide,
the appropriate boundary conditions need to be applied.

The errors made using the effective index method are due to the fact that equation (5.37) does
not apply. This is the case in the vicinity of vertical dielectric interfaces. Generally speaking the
effective index method will overestimate the propagation constants of the waveguide modes.

The effective index method is not only used to calculate two dimensional mode profiles and its cor-
responding propagation constants. More often it is used to simplify a two dimensional transversal
waveguide structure to a one dimensional structure which can serve as a starting point for further
analysis methods like the mode expansion method or the beam propagation method (figure 5.11).

5.2.5 Numerical methods

Numerical methods like finite difference or finite element methods start of from the vectorial equa-
tions or the scalar Helmholtz equation. In a finite difference method, the first step always is the
discretization of the refractive index profile. To do this the waveguide is put inside a box with
dimensions that are sufficiently large to suppose that the fields are zero on the edges of the box.
Next, the box is divided into basic cells in which the refractive index is constant (meshing). De-
pending on the meshing algorithm, the mesh will or will not be equidistant.

In a second step the field equations are discretized by replacing the derivatives by their finite
difference representation. In this way the set of partial differential equations is replaced by a
linear set of equations which can be solved using standard algebraic methods.

The errors due to the finite difference method have two causes. There is the finite difference
approximation of the derivatives and on the other side the approximation that the fields are zero
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Figure 5.12: Discretization for numerical methods

on the edges of the box. To reduce these errors the discretization of the mesh can be refined and
the dimensions of the box can be increased.

Note that there is a fundamental difference between the errors due to an approximate method
like the effective index method and a numerical method like the finite difference method. With
numerical methods we can start of with the exact Maxwell equations and the error can always
be reduced by refining the discretization parameter, at the expense of larger calculation times. In
approximated methods like the effective index methods, the equations are solved rigorously, but
the equations are only approximations of Maxwells equations.

5.2.6 Modes of metal-dielectric surface plasmon waveguide structures

In this section we will discuss the waveguiding properties of an interface between a semi-infinite
metal with a complex permittivity εm = ε′m + jε′′m and a semi-infinite dielectric with permittivity
εd = ε′d + jε′′d, as shown in figure 5.2.6.

While this layer structure consists only of two semi-infinite materials, one can still look for guided
modes with a propagation constant β. If these guided modes exist, their propagation constants can
be found by solving the eigenvalue equation 5.27 and 5.28 for TE and TM polarization respectively,
by letting d approach to zero, as this two-layer waveguide can be treated as a limiting case of the
three-layer waveguide stack discussed in the previous section. For TE polarization, this results in
an eigenvalue equation

γ = −δ (5.43)

while for TM polarization the eigenvalue equation becomes

γ

εm
+

δ

εd
= 0 (5.44)

with
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Figure 5.13: Example of 2D mode calculation using a numerical method. The upper row of plots shows
the 0th and 1st order TE mode of a rib waveguide. The second row of plots shows the symmetric and
antisymmetric TE mode in two coupled waveguides of the same type as the first row.

Figure 5.14: In this graph we show the effective index of the 0th order mode (TE and TM) of the depicted rib
waveguide, calculated using a numerical mode solver (exact) and the effective index method. The guiding
layer of the rib waveguide is 0.6µm thick. In the low index contrast case (not etched in the guided layer (t <
0)) the results of the effective index method closely resemble the exact results. Also when the waveguide is
etched completely through the guiding layer (t > 0.6µm) this is the case. Only in the intermediate area the
approximation is less good.
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Figure 5.15: interface between a semi-infinite dielectric and a semi-infinite metal

γ =
√
β2 − ω2µ0ε0εm and δ =

√
β2 − ω2µ0ε0εd (5.45)

The eigenvalue equation for TE polarization yields no solution: assume that there would be a
solution βTE , inserting this solution in 5.43 would result in the requirement that εm = εd (and
βTE = ωµ0ε0εd), which represents the case of a plane wave solution in a uniform medium. For
TM polarization, we can rewrite the eigenvalue equation as:

β =
ω

c

√
εdεm
εd + εm

(5.46)

For a lossless metal and dielectric (ε′′m = ε′′d = 0), we can write

β =
ω

c

√
ε′dε
′
m

ε′d + ε′m
(5.47)

A guided mode exists if β is real (as an imaginary β would result in an exponentially decaying
field without oscillations, which carries no power). There are two possibilities to satisfy this re-
quirement (assuming a positive ε′d):

ε′m > 0 (5.48)

or

ε′m < 0 and
∣∣ε′m∣∣ > ε′d (5.49)

Substituting equation 5.47 in equation 5.45, one finds an expression for γ and δ, which describe
the field profile of the electromagnetic mode as

{
hy = Ae−δx (x ≥ 0)
hy = Aeγx (x ≤ 0)

(5.50)

in analogy with the mode profile for TE polarized waveguide modes for dielectric waveguides in
equation 5.50 (letting d go to zero and also taking into account the continuity of hy at the interface).

In this equation, γ and δ are give by
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Figure 5.16: hy-field of a surface plasmon propagating at the interface between a semi-infinite dielectric
and a semi-infinite metal

γ =
ω

c

√
−ε′2m

ε′m + ε′d
(5.51)

and

δ =
ω

c

√
−ε′2d

ε′m + ε′d
(5.52)

When ε′m < 0 and |ε′m| > ε′d (condition 5.49), both γ and δ are real and positive, implying that
the hy field component of the mode guided at the metal-dielectric interface consists of two ex-
ponentially decaying functions, as shown in figure 5.2.6. This mode, which exists at the interface
between a semi-infinite dielectric and (perfect) metal is referred to as a surface plasmon mode. The
ex and ez field components can easily be calculated from equation 5.16. These are also exponen-
tially decaying (with ez being continuous at the interface, while there is a discontinuity in the ex
component). The fields typically penetrate much deeper into the dielectric than into the metal. The
fact that the field peaks at the interface, makes the propagation properties of the surface plasmon
mode very sensitive to possible variations in the refractive index at the metal-dielectric interface
and these modes can therefore be used to sense the presence of a very thin layer at the metal
surface (e.g. the detection of a monolayer of proteins at a chemically activated gold surface).

When ε′m > 0, γ and δ will be imaginary, meaning that the light will not be bound to the interface,
and radiate into the two semi-infinite media (radiative surface plasmon mode).

While we assumed a perfect metal in the above discussion, the theory can be extended for the case
of a lossy metal. The above conclusions remain valid, while the propagation constant obtains an
imaginary part which describes the loss the surface plasmon mode experiences when travelling
along the metal-dielectric interface. Propagation lengths are typically in the order of 10 to 100µm,
depending on the metal used and the wavelength.

The real part of the dielectric function of a metal can be described by (according to the free electron
model of Drude)

ε′1(ω) = 1−
ω2
p

ω2
(5.53)
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with ωp the plasma-frequency. Therefore, a non-radiating surface plasmon (ε′m < 0 and |ε′m| > ε′d)
can only exist when

ω <
ωp√

1 + ε′d
(5.54)

while radiating surface plasmons (ε′m > 0) occur when ω > ωp.

5.3 Propagation through dielectric waveguide structures

In this section we will discuss the propagation of light through waveguide structures for which the
transversal cross section varies along the propagation direction. In some cases approximated semi-
analytical calculation methods can be used (mode expansion, coupled mode theory, supermode
theory). In most cases a complete numerical treatment will be necessary.

5.3.1 Mode expansion and propagation method

We assume a one dimensional z invariant waveguide that is excited by a field distribution Ψ(x, z)
and we want to see how this field looks like after propagating through the waveguide over a
distance L.

The eigenmodes of the waveguide form a complete set and are orthonormal, so we can write

Ψ(x, z = 0) =
N−1∑
i=0

aiψi(x) with

+∞∫
−∞

ψi(x)ψj(x)dx = δij (5.55)

In this equation ψi is the i-th eigenmode of the waveguide. This sum includes all eigenmodes
(both the guided and radiating eigenmodes, for which the sum actually has to be replaced by an
integral). The expansion coefficients ai can easily be calculated. By multiplying equation (5.55)
with ψj and integrating this equation from −∞ to +∞we find

aj =

+∞∫
−∞

Ψ(x, z = 0)ψj(x)dx (5.56)

The propagation of the individual eigenmodes through the waveguide is trivial (multiplying
each eigenmode by its propagation factor e−jβjz). The field Ψ(x, z)after propagation through the
waveguide over a distance L is then given by

Ψ(x, z = L) =
N−1∑
i=0

 +∞∫
−∞

Ψ(x, z = 0)ψi(x)dx

ψi(x)e−jβiL (5.57)
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Suppose this waveguide is coupled to another, also z-invariant waveguide, with eigenmodes
φi(x). If we assume that there are no reflections (which is an approximation), the output field
of the first waveguide becomes the input field of the second waveguide. Just like in equation
(5.55) we can decompose this field in the eigenmodes of the second waveguide

Ψ(x, z = L) =
N−1∑
i=0

aiψi(x)e−jβiL =
M−1∑
j=0

bjφj(x) (5.58)

Because also the eigenfunctions φi(x) are orthonormal, we can find an expression for bk:

bk =

+∞∫
−∞

Ψ(x, z = L)φk(x)dx =
N−1∑
i=0

ai

+∞∫
−∞

ψi(x)φk(x)dxe−jβiL (5.59)

We can now propagate the field (5.58) through the second waveguide:

Ψ(x, z = L+ L′) =
M−1∑
j=0

bjφje
−jγjL′ (5.60)

in which γj are the propagation constants of the eigenmodes in the second waveguide. This pro-
cedure can be repeated as often as required and can be written down easily in a matrix notation.

Note that at every vertical waveguide discontinuity a reflected field originates. So, not only the
coupling of the eigenmodes of the first waveguide to the eigenmodes of the second waveguide
needs to be taken into account, but also the coupling back to the eigenmodes of the first waveg-
uide needs to be considered. When there is only a weak discontinuity these reflections can often
be neglected and in such a case the unidirectional mode expansion propagation method described
above applies. In some cases it is necessary however to include the reflections and then a bidirec-
tional eigenmode expansion propagation method has to be used.

Figure 5.17a shows how the propagation of a field through a gradually broadening waveguide
can be calculated by means of the mode expansion method. Here, the discontinuities are small
and we can neglect the reflected field. For the codirectional coupler of figure 5.17b this is not the
case. In this case reflections play an important role and a bidirectional method has to be used.

5.3.2 Coupled mode theory

In a regular z-independent waveguide, eigenmodes are orthonormal and propagate in an inde-
pendent way. The complete field can be written as a linear combination of the eigenmodes. In
some situations the waveguide structure can be seen as a small perturbation of the simple z-
independent waveguide structure. In that case, the field can still be written in terms of the modes
of the simple waveguide structure, but due to the perturbation these modes will no longer be
decoupled. In the case two modes are dominant, the field can be written as:

Ψ(x, z) = C1(z)e−jβ1zψ1(x) + C2(z)e−jβ2zψ2(x) (5.61)
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Figure 5.17: Waveguide structures

Figure 5.18: Coupled mode theory

Fast longitudinal variations are taken into account by the propagation factor e−jβiz while the z-
dependent coefficients C1(z) and C2(z) describe the coupling between the two modes ψ1 and ψ2.
An alternative formulation takes all longitudinal variations together in one term Xi(z):

Ψ(x, z) = X1(z)ψ1(x) +X2(z)ψ2(x) (5.62)

We will continue to use the formulation used in equation (5.62). Depending on the envisioned
structure an appropriate choice of ψ1 and ψ2 has to be made. In figure 5.18 a typical example
is shown of a waveguide structure where coupled mode theory can be applied. Is this case we
choose ψ1 and ψ2 to be the waveguide modes of the unperturbed waveguides. Note that we can
consider this system to be double perturbed.

The uncoupled modes ψ1 and ψ2 satisfy following propagation equations:
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dX1
dz = −jβ1X1
dX2
dz = −jβ2X2

(5.63)

with the obvious solution

X1(z) = e−jβ1z

X2(z) = e−jβ2z (5.64)

Coupled mode theory postulates that linear coupling terms need to be added to this equation to
describe the perturbed system

dX1(z)
dz = −jβ1X1(z)− j(κ11X1 + κ12X2)

dX2(z)
dz = −jβ2X2(z)− j(κ21X1 + κ22X2)

(5.65)

We will assume that the coupling coefficients are z-independent and that both modes travel in
the same direction (uniform codirectional coupling). Normally, some other assumptions are also
made:

• The two modes are normalized

• The total power flux in the system can be calculated by the sum of the power carried by
every mode seperately:

P (z) = |X1|2 + |X2|2 (5.66)

Modes have to be power independent for this.

• The complete system is lossless (dP (z)
dz = 0). If we calculate dP (z)

dz by means of equation (5.66)
and (5.65) we find that {

β1, β2, κ11, κ22 are real
κ21 = κ12∗

(5.67)

• Based on reciprocity and symmetry around a plane parallel to z=0 we also find (both for
lossless and lossy systems) that

κ21 = κ12 (5.68)

This means that in the lossless case all coupling constants are real.

If we choose initial conditions to be X1 = 1 and X2 = 0, which means that only one of the modes
is excited, integrating equation (5.65) leads to

X1(z) = e−jβz
[
cos(δz)− i∆

δ sin(δz)
]

X2(z) = e−jβz
[
−iκ21

δ sin(δz)
] (5.69)

5–24



Figure 5.19: Variation of the power in the two modes ψ1 and ψ2. In the left graph ∆ = 0 (no phase
mismatch). In the right graph the power exchange in the case of ∆ = 1.113κ and ∆ = 3.0κ (dashed line) is
shown.

with

β = (β1 + β2 + κ11 + κ22)/2
κ =
√
κ12κ21

∆ = (β1 − β2 + κ11 − κ22)/2
δ =
√

∆2 + κ2

(5.70)

with β the average propagation constant of both modes and ∆ expressing the phase matching per
length unit between both modes (note that in most cases κ11 and κ22 are small compared to β1 and
β2, so ∆ ≈ β1−β2

2 ).

In figure 5.19 some typical variations of the power P1 = |X1|2 and P2 = |X2|2 are plotted as a
function of z in the lossless case (κ = κ12 = κ21). We can clearly see the periodic power exchange
between the modes, for which the period and the amount of power exchanged depend on the
coupling coefficient κ and the phase mismatch ∆.

• When there is no phase mismatch (∆ = 0) complete power exchange occurs. This is the case
when both modes have the same propagation constant. This case is also called synchronous
coupling. The coupling length is

Lc =
π

2κ
(5.71)

• As long as ∆ remains smaller than κ, still an important power exchange occurs. With increas-
ing phase mismatch, both the power exchange level and power exchange period decrease.
The maximum power that can be coupled from one mode to another is given by

κ2

κ2 + ∆2
(5.72)

• For a large phase mismatch (∆ >> κ) power exchange is negligible. The modes are no
longer coupled.

We will now consider two typical examples in which the coupled mode theory can be applied.
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Figure 5.20: Directional coupler structure

Figure 5.21: Contradirectional grating coupler

• Directional coupler

In the case of a directional coupler, consisting of two waveguides running parallel to each
other, the coupling coefficients can easily be calculated using perturbation theory (see Ap-
pendix). We find that

κ12 = k2
0
2

∫
(n2

12 − n1
2)ψ1ψ2dx

κ21 = k2
0
2

∫
(n2

12 − n2
2)ψ1ψ2dx

(5.73)

• Contradirectional grating coupler

In the case of a contradirectional grating coupler one chooses the modes ψ1 and ψ2 to be
identical but propagating in the opposite direction. The theory described above can then be
repeated, however we have to change equation (5.66) for the z-dependent power flux to

P (z) = |X1|2 − |X2|2 (5.74)

In the chapter on periodic structures this theory will be elaborated. Applications of the
contradirectional coupler are DBR and DFB lasers.

5.3.3 Supermodes

An alternative calculation method uses the theory of supermodes 1. Lets consider again a direc-
tional coupler consisting of two identical monomodal waveguides, both with fundamental mode

1Actually this is a simplified form of the general mode expansion theory described in 5.3.1
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ψ0. We can also look at the structure as a whole as being a single waveguide. In this waveguide
structure a symmetrical and antisymmetrical mode φ+ and φ− with propagation constants β+ and
β− can propagate (see also figure 5.13).

When we excite one of the waveguides with its modal field ψ0 then we can write

Ψ(x, z = 0) = ψ0(x) ≈ c+φ+ + c−φ− (5.75)

with c+ = c− = 1/2. After propagation over a distance L this becomes

Ψ(x, z = L) = c+φ+e
−jβ+L + c−φ−e

−jβ−L (5.76)

or

Ψ(x, z = L) = c+e
−jβ+L

[
φ+ + φ−e

+j(β+−β−)L
]

(5.77)

When e+j(β+−β−)L = −1 all power will be concentrated in the second waveguide. This way we
find the following relation between the coupling coefficient κ and the difference β+ − β−:

β+ − β− = 2κ (5.78)

Lets now consider an asymmetrical directional coupler. The modes will no longer be perfectly
symmetrical and asymmetrical but tend to look like the modes of the individual waveguides.
Equation (5.75) is still valid, but c+ will no longer equal c−.

After propagation over a distance L, we find

Ψ(x, z = L) = c+e
−jβ+L

[
φ+ +

c−
c+
φ−e

+j(β+−β−)L

]
(5.79)

The period of power exchange still is given by

Lc =
π

β+ − β−
(5.80)

but the power exchange is no longer complete. The amount of power exchange is given by c−
c+

. So
we can write

(β+ − β−) = 2δ = 2
√

∆2 + κ2 (5.81)

and if |∆| >> κ

(β+ − β−) ≈ 2 |∆| ≈ |β1 − β2| (5.82)

In certain cases it occurs that the dispersion curves β1(ω) and β2(ω) of the uncoupled waveguides
intersect at a certain frequency. This means that the directional coupler operates in phase matched
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Figure 5.22: Dispersion curves of uncoupled modes and super modes

conditions for this frequency (so there is strong coupling) and for other frequencies the coupling
is weak (asynchronous coupling). So we get the picture as shown in figure 5.22 in which β1, β2, β+

and β− are shown as a function of frequency. From this picture it is clear that at low frequency
the supermodes resemble the propagation constant (and field profile) of one of the unperturbed
modes. At the phase matching frequency this behaviour is broken and β+−β− = 2κ. At higher fre-
quencies this behaviour changes and each of the supermodes will resemble the other unperturbed
waveguide mode.

5.3.4 Beam propagation method

1. Introduction

The methods described in the previous sections only are applicable for a number of simple
waveguide structures. In most cases there will be some coupling between guided and ra-
diating modes. Because of this coupling, part of the optical power will be lost. The most
important technique that takes into account this radiation loss is the beam propagation
method (BPM). BPM allows to calculate the propagation of the optical field over a large
distance (compared to the wavelength) and this for very complex structures. The required
computer code is fairly simple and can easily be extended to waveguides with gain and loss,
to waveguides with discrete longitudinal reflections or for polarization sensitive waveguide
configurations like in the anisotropic LiNbO3 crystal.

The BPM-method can be used to model three dimensional waveguide structures. The sim-
ulation can be done in two ways. One can use a full three dimensional version of the BPM
code. This leads to the most accurate results but is very time consuming. A less time con-
suming method is the combination of the effective index method and a two dimensional
BPM. This eliminates the large index contrast with air and reduces the simulation time sub-
stantially. It is only useful however if the radiation towards the upper and lower half space
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is negligible. In real structures this is often the case. Therefore, we will restrict ourself to the
two dimensional BPM method. First we will discuss the classical FFT-BPM method.

2. FFT-BPM

Starting point of the discussion is the Helmholtz scalar wave equation in two dimensions

∇2Ψ(x, z) + k2
0n

2(x, z)Ψ(x, z) = 0 (5.83)

The square of the refractive index profile can be written as

n2(x, z) = n2
0 + ∆n2(x, z) (5.84)

in which n0 is a well chosen constant refractive index such that

∆n << n0 (5.85)

We propose a solution to equation (5.83) of the form:

Ψ(x, z) = ψ(x, z)e−jk0n0z (5.86)

The fast z-variations in Ψ(x, z) are covered by the propagation factor e−jk0n0z . We can as-
sume that ψ(x, z) will only be weakly z-dependent, such that∣∣∣∣∂2ψ

∂z2

∣∣∣∣ << ∣∣∣∣2k0n0
∂ψ

∂z

∣∣∣∣ (5.87)

This means that the amplitude function ψ(x, z) varies slowly on the scale of the material
wavelength 2π

k0n0
(the so called paraxial approximation).

Substituting equation (5.86) into equation (5.83) we find that (taking equation (5.87) into
account)

∂ψ(x, z)
∂z

= − j

2k0n0

(
∂2ψ(x, z)
∂x2

+ k2
0∆n2(x, z)ψ(x, z)

)
(5.88)

This is the scalar Fresnel equation or parabolic wave equation. We can write down equation
(5.88) like

∂ψ(x, z)
∂z

= (T̂ + N̂)ψ(x, z) (5.89)

in which

T̂ = − j
2k0n0

∂2

∂x2

N̂ = −jk0

2n0
∆n2

(5.90)

Integration of equation (5.88) can formally be determined to be
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ψ(x, z + ∆z) = e(T̂+N̂)∆zψ(x, z) = eT̂∆z
[
eN̂∆zψ(x, z)

]
(5.91)

In this solution the step ∆z has to be chosen sufficiently small. On the one hand because then
∆n(x, z) can be assumed z-independent over this step, on the other hand because stating that

e(T̂+N̂)∆zψ(x, z) = eT̂∆z
[
eN̂∆zψ(x, z)

]
(5.92)

which means that we apply the operators T̂ and N̂ sequentially and not together, is only
valid for sufficiently small ∆z.

This way the field is propagated stepwise through the complete waveguide structure. We
will now study the operator e(T̂+N̂)∆z . Calculating the term

[
eN̂∆zψ(x, z)

]
is straightfor-

ward. The field ψ(x, z) is multiplied by an x-dependent phase term. The meaning of the
operator eT̂∆z is less obvious. Therefore we will first study the influence of the operator on
a plane wave ψ = e−jkxx. Developing the operator in a Taylor expansion, we can write:

eT̂∆ze−jkxx = e
− j∆z

2k0n0

∂2

∂x2 e−jkxx

=
(

1 + (− j∆z
2k0n0

∂2

∂x2 ) + 1
2(− j∆z

2k0n0

∂2

∂x2 )2 + ...
)
e−jkxx

= (1 + j
2k0n0

∆zk2
x + 1

2

(
j

2k0n0
∆zk2

x

)2
+ ...)e−jkxx

= e
j

2k0n0
∆zk2

xe−jkxx

(5.93)

Therefore the influence of the operator on a plane wave can easily be calculated. Therefore,
to calculate the influence of the operator on an arbitrary field ψ(x, z) we first take the fourier
transform of the field. On this plane wave expansion we can apply the operator eT̂∆z . By
doing an inverse fourier transform we find the result of eT̂∆zψ(x, z). Note that this is equiv-
alent to the propagation of an arbitrary field through a homogenous medium with refractive
index n0.

The calculation of the propagated field ψ(x, z = ∆z) out of the original field ψ(x, z) is done
as follows. First a phase correction, due to the index perturbation, is applied (operator eN̂∆z).
Then the field is decomposed into its plane wave components, these are individually propa-
gated through a homogenous medium with refractive index n0 and then recomposed to the
complete field distribution (operator eT̂∆z).

Note: Calculating e(T̂+N̂)∆zψ(x, z) as eT̂∆z
[
eN̂∆zψ(x, z)

]
is only an approximation. This is

because the operators do not commute. A better approximation is to write

e(T̂+N̂)∆zψ(x, z) = e( T̂
2

)∆zeN̂∆ze( T̂
2

)∆zψ(x, z) +O(T̂ 3, N̂3) (5.94)

The analysis is completely analogous to the previous one.

3. Expanding the theory

FFT-BPM method is not often used any more. In most commercial modeling tools a finite
difference BPM algorithm is used. In a finite difference BPM the paraxial wave equation
is directly discretized, both longitudinally and transversally. Other extensions to the BPM
algorithm are related to
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• the waveguide structure which is not paraxial (i.e. equation (5.87) is no longer valid)
• vectorial calculations
• reflections
• 3D waveguides
• numerical accuracy and efficiency
• high contrast waveguides
• improved boundary conditions

5.4 Optical components

5.4.1 Loss in straight waveguides

In the previous section the straight waveguide was already extensively analyzed. In this section
we will therefore restrict ourself to an aspect that has not yet been dealt with: propagation losses
in waveguides. There are different causes for this loss. The interaction of light and matter result
in absorption and non perfect guiding results in scattering and radiation losses.

When the origin of the loss is uniformly spread over the waveguide length, the guided optical
power will decrease exponentially with the propagation distance.

P (z) = P0e
−αz (5.95)

α is called the power attenuation coefficient. Due to the typical dimensions of an integrated optical
circuit (cm scale) α typically has to be below 0.1 to 1.0 cm−1, which corresponds to a loss between
0.5dB/cm to 5dB/cm. We will now discuss the different loss mechanisms which cause these losses.

• Loss through absorption

In semiconductor materials with a direct bandgap, the easiest absorption mechanism is the
electron-hole pair creation by a photon with a photon energy larger than the bandgap Eg.
Sometimes this is wanted (photodetectors) and if this is not the case it can easily be pre-
vented by choosing a material composition with a bandgap sufficiently large compared to
the photon energy.

Also free carriers play a role in the absorption process due to inter and intraband transi-
tions. For non-intentionally doped semiconductors with a carrier concentration of about
1016cm−3 this absorption typically remains below 0.1dB/cm. Also in non semiconductor
material losses occur due to electronic and molecular transitions.

• Loss through scattering

Scattering losses are caused by spatial fluctuations of the refractive index (volume scattering)
or by the roughness at the sidewalls of the waveguide (surface roughness scattering). These
can be both etched waveguide boundaries that determine the waveguide or the interface of
two layers which are grown on top of each other. In practice mostly surface roughness scat-
tering seems to be a problem. Based on some simple assumptions, following approximated
equation for the scattering loss at boundaries can be obtained

5–31



Figure 5.23: GaAs waveguide structure with radiation to the substrate

α = αscat
(∆n)2E2

s

P
(5.96)

∆n is the index contrast at the interface, P is the power in the optical field and Es is the
field strength at the edges of the waveguide. The constant αscat can only be empirically
determined and depends on the etching process used.

One type of waveguides where special care has to be taken to limit the scattering loss are the
deeply etched waveguides because the refractive index contrast between air and semicon-
ductor is very high.

• Loss through radiation

Loss through radiation is due to the non perfect guiding of the waveguide. The simplest ex-
ample is a waveguide core that is not positioned between two layers with a lower refractive
index. In that case there will be no total internal reflection and power will leak out of the
waveguide.

Another possibility is the case in which the waveguide core is positioned in between two
layers with lower refractive index, but where there is however an area with higher refractive
index nearby, to which optical power can leak. This process is comparable to the quantum
mechanical tunneling of charged particles through a potential barrier. This situation fre-
quently occurs in GaAs/AlGaAs waveguides existing of a GaAs waveguide core cladded
by AlGaAs material and grown on a GaAs substrate. The AlGaAs material compositions
that can be grown lattice matched on a GaAs substrate have a refractive index lower than
that of GaAs, so power will leak from the waveguide core to the substrate. An example
of such a waveguide is shown in figure 5.23. By increasing the thickness of the AlGaAs
cladding layer, radiation losses can be limited.

5.4.2 Bent waveguides

Bent waveguides show a fundamental radiation loss. In straight waveguides the tendency for light
to diffract is compensated by the higher refractive index of the waveguide core and the waveguide
mode has flat phase fronts. In bent waveguides the phase front is rotating around a rotation center.
Because the group velocity of the phase fronts can not exceed the local speed of light (c/n), there
is a point where the phase front bends and where radiation occurs (figure 5.24).
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Figure 5.24: Bent waveguide

Bent waveguides place designers in a dilemma: radiation losses increase nearly exponentially
with decreasing bend radius. The integration of multiple components on a semiconductor wafer
(InP: maximum 2 inch wafers , Silicon: typically 8 inch wafers) requires waveguides that can
change propagation direction on a short distance and without too many losses.

For the theoretical treatment we start off again from a two dimensional waveguide, possibly ob-
tained by applying the effective index method. To calculate the waveguide modes we change to a
cylindrical coordinate system r, φ. The edges of the bent waveguide will coincide with the coordi-
nate planes r = R1 and r = R2. In this coordinate system the Helmholtz equation can be written
as

(
∂2

∂r2
+

1
r

∂

∂r
+

1
r2

∂2

∂ϕ2
+ k2

0n
2(r)

)
Ψ(r, ϕ) = 0 (5.97)

with n(r) the refractive index profile. We propose a solution

Ψ(r, ϕ) = ψ(r)Φ(ϕ) (5.98)

ψ(r) describes the bend mode profile, while Φ(φ) determines the propagation. Substituting this
equation in the Helmholtz equation results in

(
r2

ψ(r)
∂2

∂r2
+

r

ψ(r)
∂

∂r
+

r2

ψ(r)
k2

0n
2(r)

)
ψ(r) = − 1

Φ(ϕ)
∂2Φ(ϕ)
∂ϕ2

(5.99)
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While the left side of equation (5.99) only depends on r and the right side only depends on φ we
can equate both sides with a constant β2

φ. Therefore we can write

1
Φ(ϕ)

∂2Φ(ϕ)
∂ϕ2

+ β2
φ = 0 (5.100)

The general solution to this equation is

Φ(ϕ) = Ce±jβφφ (5.101)

The solution is analogous to the solution for propagation in a straight waveguide. The phase fronts
coincide with φ = cte planes. So they turn around the bend. βφ is called the angular propagation
constant (dimension rad−1).

The left side of equation (5.99) can be solved directly by using Bessel functions. This requires the
calculation of Bessel functions with large and complex indices, which leads to a lot of numerical
problems. Another way of solving this equation is the so called conformal transformation. By
substituting r = Rte

u
Rt we can write equation (5.99) like

[
∂2

∂u2
+ (k2

0n
2
t (u)− β2

t )
]
ψ(u) = 0 (5.102)

in which nt(u) = n(u)e
u
Rt and βt = βφ

Rt
.

This means that in the (u, φ) coordinate system the Helmholtz equation has exactly the same shape
as in a cartesian coordinate system (x, z) when we replace the refractive index profile n(u) by
the transformed index profile nt(u). Modes and propagation constants in bent waveguides can
therefore be calculated by a mode solver developed for solving straight waveguide modes, by
introducing the transformed index profile nt(u). This is schematically depicted in figure 5.25.

Figure 5.26 gives an example of a refractive index profile and the corresponding bend mode profile
for different values of the radius of curvature. Based on the transformed refractive index profile it
is easy to understand what happens in a bend:

• From the point where

Re(βt) = nt(u)k0 (5.103)

radiation will occur and the phase front will bend backwards. That way propagation losses
occur.

• The mode is most strongly guided in the area with the highest refractive index. Therefore,
the mode profile will shift towards the outer rim of the bent waveguide. At the transition
from straight to bent waveguide mode adaptation losses will occur.

• By decreasing the ring radius, the mode will completely move towards the outer edge of
the waveguide so that the inner edge of the waveguide does not longer contribute to the
guiding of the mode. These modes are called whispering gallery modes. The width of the
waveguide is no longer an issue in the whispering gallery regime.
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Figure 5.25: Conformal transformation

Figure 5.26: Bend mode profiles
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Figure 5.27: Bend mode loss (dB/90 degrees) as a function of radius and refractive index contrast

• By the increased field strength at the outer edge of the waveguide scattering losses will also
increase.

These effects are all clearly visible in figure 5.26.

• Radiation losses

Because the refractive index will be larger than the effective index of the waveguide mode
at a certain distance from the bend, the effective index of a waveguide bend mode will be
complex. We can write the angular propagation constant as

βφ = β′φ + jαφ (5.104)

and

αφ = αtRt = −Im(neff,t)k0Rt (5.105)

Figure 5.27 shows the attenuation coefficient as a function of the radius and the refractive
index contrast as a parameter. It is clear that the loss increases rapidly below a certain critical
bend radius.
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Figure 5.28: Adaptations at a straight waveguide / bend waveguide interface

Figure 5.29: BPM calculation of an adiabatic (250um long) and a non-adiabatic (50um long) taper. Both
tapers have a straight input waveguide of 10um long and a straight output waveguide of 100um.

• Mode adaptation losses

In the bend, the mode profile is shifted outwards and is narrower than in the straight waveg-
uide. The adaptation losses between straight and bent waveguide can be reduced by reduc-
ing the width of the straight waveguide and giving this waveguide an offset with respect to
the bend, such that both waveguide profiles correspond better. The adaptation losses can be
calculated by calculating the overlap integral of the bend mode and the mode in the straight
waveguide. An adapted straight waveguide / bend interface is shown in figure 5.28.

5.4.3 Tapers

1. General description

A taper is a smooth transition between two waveguides of different widths or height and is
used to couple two components with different waveguide geometry. Changes in the waveg-
uide structure result in mode conversion. This means that power is exchanged between the
different modes of the waveguide. When power is coupled to radiating modes, loss occurs,
but also in the case of multimodal waveguides it is often unwanted that the power is dis-
tributed over different waveguide modes. Mode conversion can be suppressed when the
change in waveguide structure is very gentle. In the case we call the adaptation of the mode
profile adiabatic. An adiabatic transition between two waveguide structures is a transition
where the mode of the system adapts to the changing geometry without loosing power by
conversion to other modes. To analyze taper structures numerical methods need to be used:
BPM method or mode expansion and propagation method applied to a staircase approxima-
tion of the taper profile.

5–37



Figure 5.30: Definition of the local taper length

Figure 5.31: The linear and parabolic taper

Based on some intuitive considerations it still is possible to derive a criterion to calculate the
maximum adiabatic taper angle, which allows an adiabatic transition. As said before, the
fundamental mode will transform adiabatically when no power coupling to higher order
modes occurs. We can assume that especially the coupling to the second order mode is
dominant (the first order mode is antisymmetrical). Based on this assumption, we propose
the following criterion for adiabatic transitions: the taper will behave adiabatically when the
local taper length is larger than the local coupling length between the fundamental mode and
the next symmetrical mode. The local taper length zt is defined as in figure 5.30.

zt =
ρ(z)

tan(Ω(z))
≈ ρ(z)

Ω(z)
(5.106)

The coupling length is given by

zb =
π

β0 − β2
(5.107)

The criterion then becomes

zt > zb or Ω <

[
β0 − β2

π

]
ρ (5.108)

Because the difference β0−β2 is proportional to ρ−2 (this will become clear in the discussion
on the multimode interference coupler), the maximum taper angle will be larger when the
waveguide is narrower. Therefore, the ideal taper design is parabolic.

2. Improving coupling efficiency to an optical fiber

A typical monomodal optical fiber has a core diameter of 9 µm, has a small refractive index
contrast between core and cladding layers (∆n ≈ 1%) and the mode is circular. The waveg-
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Figure 5.32: Sections of a directional coupler

uides fabricated in a III-V semiconductor material system typically are a few micrometer
wide, have higher refractive index contrast and have non circular mode profiles.

The fundamental modes in the two systems strongly differ, therefore the coupling losses
from fiber to waveguide will be high. A possible solution is the use of a taper structure.
By narrowing the integrated waveguide (this can be done both transversally or vertically)
the mode will expand and a better mode matching can be obtained, thereby reducing the
coupling losses.

5.4.4 Directional coupler

The directional coupler was already treated in previous sections on coupled mode theory and
supermode theory. In these cases always a longitudinally invariant waveguide structure was as-
sumed. In reality, a directional coupler consists of a central section (in which the actual coupling
takes place) and an input and output section. In many cases part of the optical power will already
be exchanged between the waveguides in the input and output section where the waveguides are
already in close proximity. This needs to be analyzed using the beam propagation method. The
most important application of the directional coupler is the use as a 3dB coupler.

5.4.5 Multimode interference coupler

An alternative to the directional coupler is the use of a multimode interference coupler (MMI). The
central part of an MMI is a broad multimode waveguide. Light can be injected in and coupled
out of the multimode section through a number of input and output waveguides (figure 5.34).
The operation principle of the device is based on the self imaging principle. This is a property
of multimodal waveguides where an input field is reproduced in single and multiple images at
periodic intervals along the propagation direction of the waveguide. In this way 1xN couplers can
be realized, but also cross couplers and even couplers with an arbitrary coupling ratio.
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Figure 5.33: BPM simulation of a directional coupler. In the upper plots, the intensity profile and the
electrical field profile is shown. The middle graphs show the field distribution at the exit of the directional
coupler and the refractive index profile of the simulated directional coupler. In the bottom graph the power
in both arms of the coupler is shown. The periodic power exchange is clear.

Figure 5.34: multimode interference coupler
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To gain insight in the operation principle of the MMI, we will use the mode expansion and prop-
agation theory. Lets consider the multimodal waveguide of width W which is depicted in figure
5.34b. An arbitrary input field Ψ(x, 0) of the MMI can be decomposed in the orthonormal eigen-
modes ψi of the MMI.

Ψ(x, 0) =
N−1∑
i=0

ciψi(x) with ci =
∫

Ψ(x, 0)ψi(x)dx (5.109)

In the expansion radiation modes have been neglected, which is acceptable as long as the width of
the incident field Ψ(x, 0) is sufficiently small compared to the width of the MMI. After propagation
over a distance z along the MMI the field becomes

Ψ(x, z) =
N−1∑
i=0

ciψi(x)e−jβiz = e−jβ0z
N−1∑
i=0

ciψi(x)ej(β0−βi)z (5.110)

For the modes, the following approximation is made: we assume the shape and propagation
constant of each mode to be given by these of the modes of a waveguide with an infinitely high
refractive index contrast (field is zero at the edges of the waveguide)

ψi(x) = cos(kx,ix) when i is even
ψi(x) = sin(kx,ix) when i is odd
kx,i = (i+1)π

W

(5.111)

For real waveguide structures this is only an approximation but in the case of high index contrast
waveguides it is a very useful approximation.

As the lateral wave number kx,i and the propagation constant βi are related through

k2
x,i + β2

i = k2
0n

2
r (5.112)

we find

βi ≈ k0nr −
(i+ 1)2πλ0

4nrW 2
(5.113)

Therefore

β0 − βi =
i(i+ 2)πλ0

4nrW 2
=
i(i+ 2)π

3Lπ
(5.114)

with

Lπ =
π

β0 − β1
=

4nrW 2

3λ0
(5.115)
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If we substitute this equation into equation (5.110) then we can write down the field in the MMI
after a propagation distance L as (neglecting the common phase term)

Ψ(x, L) =
N−1∑
i=0

ciψi(x)ej
i(i+2)π

3Lπ
L (5.116)

From this equation we can deduce some interesting properties of the MMI.

• L = 6Lπ
Then equation (5.116) becomes

Ψ(x, 6Lπ) = Ψ(x, 0) (5.117)

The image at this distance equals the input field

• L = 3Lπ
Because

ψi(−x) = ψi(x) when i is even
ψi(−x) = −ψi(x) when i is odd

(5.118)

we find

Ψ(x, 3Lπ) =
N−1∑
i=0

ciψi(x)ej[i(i+2)]π

=
[
N−1∑
i=0

ciψi(x)ej[i(i+2)]π

]
i=even

+
[
N−1∑
i=0

ciψi(x)ej[i(i+2)]π

]
i=odd

=
[
N−1∑
i=0

ciψi(x)
]
i=even

+
[
N−1∑
i=0
−ciψi(x)

]
i=odd

=
[
N−1∑
i=0

ciψi(−x)
]
i=even

+
[
N−1∑
i=0

ciψi(−x)
]
i=odd

=
N−1∑
i=0

ciψi(−x)

(5.119)

This means that at a distance 3Lπ the image is the input field, mirrored around the plane
x = 0.

• L = 3p2Lπ with p odd

After some manipulation we find

Ψ(x, p23Lπ) =
N−1∑
i=0

ciψi(x)ej[i(i+2)]pπ
2

=
[
N−1∑
i=0

ciψi(x)
]
i=even

+
[
N−1∑
i=0

(−j)pciψi(x)
]
i=odd

= 1+(−j)p
2 Ψ(x, 0) + 1−(−j)p

2 Ψ(−x, 0)
(5.120)
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Figure 5.35: BPM simulation of a 1x1 MMI. The dimensions are 15x520 µm2. On the figure the places where
two folded (L/2), three folded (L/3,2L/3) and four folded images(L/4,3L/4) are formed, are clearly visible.

Figure 5.36: Y-junction

At this distance we find two images, of which one mirrored, both with amplitude 1/
√

2. So
an MMI with this length can be used as a 2x2 3dB coupler.

More general one can show that at the intermediate distances L = 3 p
NLπ (with p and N in-

teger numbers without common divider) N multiple images are formed, with an amplitude
of 1√

N
. This is illustrated in figure 5.34 and figure 5.35.

5.4.6 Y-junction

The Y-junction is composed of a single waveguide (section A), a taper (section B) and two branched
waveguides (section C). An important parameter for the Y-junction is the junction angle θ. When
the angle is sufficiently small, the fundamental mode will propagate without great losses in both
exit waveguides in section C. This is called an adiabatic Y-junction. The standard Y-junction is
designed to equally split the input power over both exit waveguides but it is also possible to
design Y-junctions for different splitting ratios.

When we use the Y-junction in the other direction and excite only one branch of the Y-junction
with the fundamental mode which propagates towards the junction, we can analyze what happens
using the theory of supermodes.
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Figure 5.37: Y-junction used as a combiner

The mode propagating in the lower branch (with amplitude 1) of the Y-junction can be decom-
posed into the sum of the local symmetrical and anti-symmetrical supermode each carrying half
of the power (amplitude 1√

2
). The symmetrical supermode will adiabatically transform to the fun-

damental mode of the exit waveguide, while the antisymmetric mode will be transformed into
the first order mode. However, when the waveguides are monomodal, this part of the power will
radiate. As both super modes carry half of the power, this half is lost. This property can also be
explained based on reciprocity and symmetry of the Y-junction.

In conclusion, we can say that when we use an adiabatically designed Y-junction as a splitter, no
losses occur. When used as a combiner no losses occur when both inputs are excited equally (both
in phase and amplitude). This is the reciprocal situation of the use as a splitter. When only one of
the inputs is excited, half of the power will be lost and when both inputs are excited equally but
in antiphase all power will be lost (for monomodal waveguides).

5.4.7 Diffraction grating

The diffraction grating is analyzed in detail in the chapter on periodic structures. In the integrated
version, the diffraction grating is mostly used as an dispersive element. In this way wavelength
demultiplexers can be fabricated. Another application is the longitudinal mode selection in a laser
cavity. By rotating the diffraction grating a wavelength tunable laser is made.

5.4.8 Phase modulator

Phase modulation in integrated waveguides can be achieved using different physical effects that
influence the optical parameters of the material. The most important effects are the electro-optical
effect, the thermo-optical effect and the influence of free carriers. All these effects create a change
in the refractive index of the material which leads to a phase modulation given by

∆φ =
2π∆neffL

λ
(5.121)

in which L is the length of the waveguide and λ is the operation wavelength.
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5.4.9 Amplifiers

An optical amplifier can be used to boost a signal in a waveguide. The amplifier can for example
be used in front of a photodetector to reduce the required sensitivity of the photodetector or it
can be used as an in line amplifier for long propagation distances. For this application both a
doped optical fiber amplifier (EDFA: Erbium Doped Fiber Amplifier) or an SOA (Semiconductor
Optical Amplifier) can be used. Sometimes the amplifier is used to amplify different signals (all
at a different wavelength) at the same time. An important issue here is the crosstalk between
different wavelength channel by saturation of the amplifier. A possible solution to this problem is
the so called gain clamped amplifier, where the gain in the amplifier is kept constant.

5.5 Characterization of optical waveguides

Determining the performance of a passive optical waveguide circuit often consists of measuring
the power transmission of the components. A typical measurement setup is shown in figure 5.38.

A light beam from a tunable laser (1) is focused on the right facet of the chip (5) using an optical
fiber (2). The laser spot can be aligned to the waveguides using a micro translation stage (7,8,9)
which is often actuated piezo-electrically (11). Part of the laser light will be coupled into the
waveguides. The coupling efficiency is determined by the overlap integral of the laser spot and
the waveguide modes. The coupling efficiency can be increased by using a lensed fiber (4). After
transmission through the waveguide light will be coupled out through the left facet and collected
using an objective lens (6) of which the focus is aligned with the left facet. Using an extra lens (13)
this light is focused onto a power meter (15,16). A diafragm (14) makes sure only the light that
comes from the waveguide is incident on the power meter. When we turn away the power meter
it is possible to get a view of the spot with a camera (19,20,21). Polarization can be controlled by
polarization control wheels at the input (3) and a polarization filter (12) at the output. Two other
techniques to couple light in and out of a waveguide are prism coupling and grating assisted
coupling. Grating assisted coupling uses a diffraction grating which is positioned on top of the
waveguide to couple light into the chip.

When we assume that the coupling efficiency into the various waveguides on a chip is equal, we
can this way do relative loss measurements, where different components are compared. Often the
loss of the components are measured with the loss of a straight waveguide as a reference.

It is possible to eliminate the coupling efficiency by doing cut-back loss measurements. After a
series of measurements the chip is cleaved in half and one half is used to redo the measurements.
The difference between both measurements is the loss in the remaining part. It is clear that this
measurement technique only works when the coupling efficiencies are equal for both parts.

An alternative way to measure the waveguide losses is the so called Fabry-Perot measurement
technique. When we couple laser light into a waveguide, reflections occur at the facets which can
be seen as partly reflecting mirrors. By adding the complex wave amplitudes of the subsequent
reflections we can calculate the total transmitted power as

T =
(1−R)2τ2

(1− τ2R)2 + 4τ2R sin2(βL)
with τ2 = e−αL (5.122)
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Figure 5.38: Measurement setup

Figure 5.39: Fabry-Perot resonances in a waveguide

This transmission function is wavelength dependent (through the propagation constant β). When
we calculate the ratio Tmax

Tmin
we find that

S =
Tmax

Tmin
=

(1 + τ2R)2

(1− τ2R)2
(5.123)

This way we can calculate the attenuation as

αdB =
10
L

(log(R)− log(
√
S − 1√
S + 1

))[dB/cm] (5.124)

By measuring the transmitted power as a function of wavelength we can easily determine the
ratio Tmax

Tmin
. When we know the reflection coefficientR (typically 0.32 for waveguide in InP) we can

determine the attenuation coefficient of the waveguide. For a correct measurement it is necessary
however that only one mode is excited. In figure 5.40 two examples of this type of measurements
are given. For the first measurement the determination of the ratio S is simple. For the second
measurement an unambiguous measurement is impossible. There are many possible causes for
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Figure 5.40: Fabry-Perot loss measurements

Figure 5.41: Double perturbed waveguide system

this problem: parasitic reflections in the measurement setup, vibrations, multimodal excitation,
wavelength dependence of the focal distance between facet and objective lens...

5.6 Appendix

5.6.1 Calculation of the coupling coefficients κi,j for a directional coupler

For the uncoupled waveguides with respective index profile n1(x) and n2(x) we can write

∂2ϕ1(x)
∂x2 + (k2

0n
2
1(x)− β2

1)ϕ1(x) = 0
∂2ϕ2(x)
∂x2 + (k2

0n
2
2(x)− β2

2)ϕ2(x) = 0
(5.125)

For the field in the coupled waveguides we can write

∂2Ψ(x, z)
∂x2

+
∂2Ψ(x, z)
∂z2

+ k2
0n

2
12(x)Ψ(x, z) = 0 (5.126)

If we propose following solution for Ψ(x, z)
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Ψ(x, z) = C1(z)ϕ1(x)e−jβ1z + C2(z)ϕ2(x)e−jβ2z (5.127)

in which C1 and C2 slowly vary with z so that we can assume

∣∣∣∣∂2Ci
∂z2

∣∣∣∣ << ∣∣∣∣−jβi∂Ci∂z

∣∣∣∣ (5.128)

Substituting equation (5.127) into equation (5.126) and taking equation (5.128) into account, we
find that

[
∂2ϕ1(x)
∂x2 + (k2

0n
2
12(x)− β2

1)ϕ1(x)
]
C1e

−jβ1z − 2jβ1ϕ1(x)dC1
dz e

−jβ1z

+
[
∂2ϕ2(x)
∂x2 + (k2

0n
2
12(x)− β2

2)ϕ2(x)
]
C2e

−jβ2z − 2jβ2ϕ2(x)dC2
dz e

−jβ2z = 0
(5.129)

When we use equation (5.125), this becomes

k2
0

[
n2

12(x)− n2
1

]
ϕ1(x)C1e

−jβ1z − j2β1ϕ1(x)dC1
dz e

−jβ1z

+k2
0

[
n2

12(x)− n2
2

]
ϕ2(x)C2e

−jβ2z − j2β2ϕ2(x)dC2
dz e

−jβ2z = 0
(5.130)

When the eigenmodes are orthonormal

βi

∫
ϕi(x)ϕj(x)dx = δij (5.131)

we find that (by multiplying equation (5.130) with ϕ1 and integrating over x):

dC1

dz
e−jβ1z = −jκ11C1e

−jβ1z − jκ12C2e
−jβ2z (5.132)

and by multiplying equation (5.130) with ϕ2 and integrating over x:

dC2

dz
e−jβ2z = −jκ22C2e

−jβ2z − jκ21C1e
−jβ1z (5.133)

with

κ11 = 1
2k

2
0

∫
(n2

12 − n2
1)ψ2

1dx
κ12 = 1

2k
2
0

∫
(n2

12 − n2
1)ψ1ψ2dx

κ21 = 1
2k

2
0

∫
(n2

12 − n2
2)ψ1ψ2dx

κ22 = 1
2k

2
0

∫
(n2

12 − n2
2)ψ2

2dx

(5.134)

When

X1(z) = C1(z)e−jβ1z

X2(z) = C2(z)e−jβ2z (5.135)
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equation (5.132) and (5.133) become

dX1
dz = −jβ1X1 − j(κ11X1 + κ12X2)
dX2
dz = −jβ2X2 − j(κ21X1 + κ22X2)

(5.136)

These are the equations proposed by the coupled mode theory.
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