

III-V silicon heterogeneous integration

Dries Van Thourhout – IPRM '08, Paris

III-V silicon heterogeneous integration

Dries Van Thourhout – IPRM '08, Paris

- **1. Silicon photonics is great !!!**
 - 2. But we still need InP
 - 3. III-V silicon integration
 - 4. Devices

Acknowledgements

Photonics Research Group

- III-V silicon integration:
 - G. Roelkens, J. Van Campenhout, J. Brouckaert, L. Liu
- Silicon Processing
 - W. Bogaerts, P. Dumon, S. Selvarajan, R. Baets

EU IST-PICMOS team

- J.M. Fedeli, L. Di Cioccio (LETI) (molecular bonding, processing)
- C. Seassal, P. Rojo-Romeo, P. Regreny, P. Viktorovitch (INL) (processing, epitaxy)
- R. Notzel, X.J.M. Leijtens (TU/e) (epitaxy)
- C. Lagahe, B. Aspar (TRACIT) (planarization)

III-V silicon heterogeneous integration

1. Silicon photonics is great !!!

2. But we still need InP

3. III-V silicon integration

4. Devices

© intec 2007 - Photonics Research Group - http://photonics.intec.ugent.be

Photonic wiring

Wavelength dependent devices

Increasing Index Contrast

imec

© intec 2007 - Photonics Research Group - http://photonics.intec.ugent.be

Silicon Photonics

Silicon photonics comes in many flavors ...

Small core devices

- Optimized for nanophotonics
- Small device size
- This work and many others

Full CMOS integration

- Fabricated in CMOS process
- Directly integrated with electronics
- e.g. www.luxtera.com

III-V on silicon ?

Silicon photonics gives us:

- Excellent passives
- Fast modulators, fast photodetectors
- But: (almost) no light ...

➔ Need for integration with III-Vs

Requirements

- High density (~10-20um device pitch)
- High alignment accuracy (~100nm)
- Waferscale processes

III-V silicon heterogeneous integration

- 1. Silicon photonics is great !!!
 - 2. But we still need InP
 - 3. III-V silicon integration

4. Devices

III-V on silicon

There are several ways to integrate III-V on SOI

• Flip-chip integration of opto-electronic components

- Image most rugged technology
- ③ testing of opto-electronic components in advance
- ⊗ slow sequential process (alignment accuracy)
- **⊗** low density of integration
- Hetero-epitaxial growth of III-V on silicon

🙂 C(

• Bonding of III-V epitaxial layers

- ☺ sequential but fast integration process
- ③ high density of integration, collective processing
- ☺ high quality epitaxial III-V layers

Starting point: Processed SOI-waveguide wafer

- 193nm or 248nm DUV lithography
 - **Fabricated in pilot CMOS-line**

Planarization

- Planarization
 - Using BCB (50nm to 2um) (UGent/IMEC)
 - Using SiO₂ (TRACIT CEA-LETI)

Die-to-wafer bonding

- Bonding InP-dies on top of planarized SOI-wafer
 - Low alignment accuracy required
 - ➔ Fast pick-and-place

Substrate removal

Ę	

- Remove InP-substrate down to etch stop layer
- Remove etch stop
- Thin membrane remains (200nm ~ 2 μm)

- Decontamination and hardmask deposition
 - Alignment of waveguides and devices through lithographic methods

Processing of InP-optoelectronic devices

imec

- Mesa etching and Metallization
 - "Waferscale" processing !!!
 - on 2cm² pieces (UGent, INL)
 - on 200mm wafers (CEA-LETI)

III-V/Silicon photonics

Bonding of III-V epitaxial layers

- Molecular die-to-wafer bonding
 - Based on van der Waals attraction between wafer surfaces
 - Requires "atomic contact" between both surfaces
 - very sensitive to particles
 - very sensitive to **roughness**
 - very sensitive to contamination of surfaces
- Adhesive die-to-wafer bonding
 - Uses an adhesive layer as a glue to stick both surfaces
 - Requirements are more relaxed compared to Molecular
 - glue compensates for particles (some)
 - glue compensates for roughness (all)
 - glue allows (some) contamination of surfaces

Bonding Technology

Requirements for the adhesive for bonding

- Optically transparent <0.1dB/cm</p>
- High thermal stability (post-bonding thermal budget) 400C
- Low curing temperature (low thermal stress) 250C
- No outgassing upon curing (void formation)
 OK
- Resistant to all kinds of chemicals
 HCI,H₂SO₄,H₂O₂,...

imec

DVS-BCB satisfies these requirements

1,3-divinyl-1,1,3,3-tetramethyldisiloxane-bisbenzocyclobutene

Cross-sectional image of III-V/Silicon substrate

• 300nm bonding layer routinely and reliably obtained

Cross-sectional image of III-V/Silicon substrate

- 300nm bonding layer routinely and reliably obtained
- Recently also sub-100nm layers demonstrated

III-V silicon heterogeneous integration

1. Silicon photonics is great !!!

2. But we still need InP

3. III-V silicon integration

4. Devices

Integrated Devices: laser diode

Integrated laser diodes

- First only pulsed operation due to high thermal resistivity DVS-BCB
- Integration of a heat sink to improve heat dissipation
- Continuous wave operation achieved this way

imec

Intel / UCSB Hybrid laser

CEA-LETI / III-V lab

Integrated microdisk laser

Microdisk laser design

- Whispering-gallery modes
- Central top contact
- Bottom contact on thin lateral contact layer (*t_s*)
- Hole injection through a reverse-biased tunnel-junction
- Microdisk thickness 0.5 < t < 1μm
- Evanescent coupling to SOI wire waveguide (500x220nm²)

imec

Integrate photonic interconnect on CMOS ?

- Need integrated interconnect layer on top of CMOS
 - Silicon wiring for interconnect
 - III-V microdevices for sources and detectors

© intec 2007 - Photonics Research Group - http://photonics.intec.ugent.be

1-µm thick, 7.5-µm devices exhibit continuous-wave lasing

Threshold current $I_{th} = 0.5mA$, voltage $V_{th} = 1.5-1.7V$ slope efficiency = $30\mu W/mA$, up to $10\mu W$

(Pulsed regime: up to 100μ W peak power)

J. Van Campenhout et al., "Electrically pumped inp-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit" Optics intec 20 Express, May 2007

"Laser emission up to 70°C"

(pulsed operation)

Fit to experimental data

imec

Model can be fitted to pulsed experimental data, assuming:

- uniform injection: injection efficiency =0.36x0.7=0.25
- coupling loss = 3cm⁻¹ (simulation)
- tunnel-junction p-doping N_a = 2x10¹⁸cm⁻³ (design target N_a = 2x10¹⁹cm⁻³, SIMS analysis: N_a ~ 8x10¹⁸cm⁻³)
- fitted scatter loss = 8cm⁻¹ (passive ring resonators: 7-13cm⁻¹)

Consistent fit, except for tunnel-junction p-doping and saturation effect

Ultra-low-power Wavelength conversion

Outlook & conclusion

We demonstrated:

- Ultra-dense waveguiding
 - < 2 µm pitch (waveguide-to-waveguide)</p>
- A powerfull III-V on Silicon integration technology
- Several proof-of-principle demonstrators
 - Electrically pumped micro-disk sources on silicon platform
 - 500 µA threshold current
 - Micro-detectors on silicon platform
 - □ 1.0A/W
- Fabrication using waferscale processes

• Implement WDM-functionality

Multi-wavelength Laser

Outlook & conclusion

We still need to:

- Improve source performance
 - Towards 50 µA threshold current 10GHz modulation speed – 30% internal efficiency
 - Through improved processing
 - Through improved device design
 - Improved high temperature operation
- Full fabrication in CMOS pilot-line
- Integration with CMOS electronic driving circuit
- Implement WDM-functionality
- Simplify overall processing

Simplify processing

• Avoid critical patterning in the III-V layer

imec

Acknowledgements

Photonics Research Group

- III-V silicon integration:
 - G. Roelkens, J. Van Campenhout, J. Brouckaert, L. Liu
- Silicon Processing
 - W. Bogaerts, P. Dumon, S. Selvarajan, R. Baets

PICMOS team

- J.M. Fedeli, L. Di Cioccio (LETI) (molecular bonding, processing)
- C. Lagahe, B. Aspar (TRACIT) (planarization)
- C. Seassal, P. Rojo-Romeo, P. Regreny, P. Viktorovitch (INL) (processing, epitaxy)
- R. Notzel, X.J.M. Leijtens (TU/e) (epitaxy)

Coupling to fiber – Grating coupler

Alternative: Grating couplers

- Waferscale testing
- Waferscale packaging
- High alignment tolerance

Increase effieciency ?

Main Challenges

1. Coupling of light between III-V and Silicon

- Option 1: evanescent
 - Guiding in silicon
 - Requires thin bonding layer
 - Requires III-V thinner than <250nm</p>
- Option 2: other (adiabatic, grating coupler ...)
 - Guiding in III-V
 - Thicker III-V layer
 - Sometimes thicker bonding

Main Challenges

- 1. Coupling of light between III-V and Silicon
 - Option 1: evanescent
 - Guiding in silicon
 - Requires thin bonding layer
 - Requires III-V thinner than <20nm</p>
 - Opt Loss at metal contact in coupler ...

 - Thicker III-V layer
 - Sometimes thicker bonding
- 2. Electrical injection
 - Metal contact on membrane devices without inducing additional loss

Integrated Devices: laser diode

Integrated laser diodes

Polyimide waveguide

- Fabry-Perot laser cavity by etching InP/InGaAsP laser facets
- Inverted adiabatic taper coupling approach

SOI inverted taper

BCB spacer layer / bonding layer